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1 INTRODUCTION

For an nth order system, there will be n feedback
coefficients or gains ky,.. .k, (k'sork; s)  and singe
Mﬁmnmmsufﬂwqmmmmmmh
degrees of freedom to select arbitrarily any desired set
of mot locations by proper choice of the feedback gaitis
k's[1,34)

There are basically two approaches [1] to carry can
design when the closed loop transfer function is given.
In the first approach, a feedback configuration with
undetermined coefficients is chosen. These coefficients
are axsigned nominal values which are then adjusted so
that the resulting closed loop system conforms 1o the
given closed loop transfer function.

The second approach or the usual method | as it is
normally refared to, comsists of matching the
cocflicients  of differet powers of s in  the
denominators of the given closed loop  transfer
function and the closed loop transfer function obtained
iniermsu{'lheibnlhad:gﬂinsk‘sh}'bhcl;diagmn
manipulation [1]. The caleulation of gains using this
lechnique becomes rather tedious and cumbersome
when the order of the system is larger than 3. This
method is not programmable. The zeros of the plant are
nol altered in the overall closed loop transfer function
wiien all the states are fed back via constant gains, The
pole zero excess of the closed loop system also remains
the same s that of the plant in this case. So for an
mplementable closed loop transfer function, the pole
zoro excess should be the same as that of the plant

However, when the system is represented in a state
variable form, special canonical forms can be used 1o
calculate these feedback coefficients [3]. An aliernative
method i3 Ackermann’s  formula [ 3] Crenerally
speaking Ackermann's formula starts o break down
for systems of higher order than 6or 7,

A repetitive procedure is deseribed here 1o computs the
values  of feedback cocfficients k's when an
implementable tramsfer function is given [2]. In control
theory, repetitive methods have the greatest appeal and
hence are most sought afler [5] Hence the repetitive
procedure described here has the same advantages |
apart from the most interesting fact that it is in terms of
the relevant transfer functions and in addition that it
can be programmed. In other words, it is in the
frequency domuin and in the time domain As no
method exists [3,5] in the frequency domain which is
programmable, no atlempt has been made in this paper
o program it for comparison purposes. Nonetheless, it
has been shown that it cen be programmed. The
fepetitive nature and the simplicity of the method are
50 obvious that the coeflficients can easily be caleulated
b hand.

Examples have been solved to highlight the procedure
evien with regard to plants which are unstable, have
coineident poles or complex poles.

2 THE ALGORITHM

The overall closed loop transfer funetion should have &
real solution, that is, it should be possible 1o gt a sct of
values for the feedback coefficients k's fom the
transfer function. The choice of the overall transfer
function should be such that:

1) all its poles are in the left half s-planc ( for
stability of the system )

2)  the same pole Zero excess as the plant

3} all its zeros are in the plant.

If condition (2) or (3) is not satisfied , it is impossible
to design a feedback configuration with k's. Condition
(I}isanl}'toenautllmthunlmudkmpsmtcmis
stable.
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A typical feedback configuration with the blocks to be
controlled, the outputs of which are the state variables
and with the cormesponding k’s is shown n Figl The
block diagram reduction atiempted goes by the name
H,, method [1]
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Fig. 1a An example of a plant which is 1 be controlled
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If there is positive feedback for the whole system
through the fecdback cocfficient k;, it is equivalent to
the feedback path containing k; bemng removed from
the svstem or just TFas) and Gy(s) in series as
illustrated in Figl
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Fig 1b Feedback configuration used 1o get the desired
closed loop transfer function
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Fig. ¢ After block diagram reduction using the most
commonly used method

_. Gn(“) Gn l(s)

Fig. 2 Arrangement of composite blocks

The composite blocks of the plant 1o be controlled are
denoted by Gy(8),Gals), ... Gals). These blocks together
constitute the plant when cascaded as in Fig2 Fig. 2
Arrangement of composite blocks which form the
plant. The whole system with the feedback
configuration  is divided to TF(s)s ( Transfer
function ) such that the transfer function of the whole
configuration is called TF(s) and the next with Gy(s)
and k, removed is called TFx(s). This is continued till
the innermost Loop which is called TF ,(s) and 1S
illustrated in Fig 3 a and Fig 3 b.

Gy(s)

o

So an equation relatmg 10TF(s), k, and TF(s), Gi(s)
can be formed.

TR(S) _ _
_—l—‘k‘.TF,(s) TF,(5).G,(s) (1)

In this equation only TFx(s) and k, are unknowns.

The pole of Gy(s) is known as it is a composite block of
the plant. AT the pole of Gi(s) both sides of the
equation (1) equal infinity except when TFy(s) has a
zero at the pole of Gy(s). When this condition 1s
satisfied the denominator of LHS equals zero at the
pole of Gy(s) only when no pole of TF(s) coincides
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with the pole of G,(s). The equation (2) is derived for
the condition when the chosen pole of Gy(s) neither
appears as a zero in the preceding blocks nor as a pole
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TF,(s) .
1-k,TF (s)" G,(5)

TE(s)= 3)

mn TF(s). This can be repeated till all the values for k's are
Thus obtained. TF,,, should be equal to the real number. K.
[ 1- k. TFy(s) b panaray oy =0 (n is the number of blocks in the plant )
+ > , ~
= K _.{ G(3) G, (5) Gy(s) >
ky ks 3
3 i
I }
( . —
b CTFE 3
Fig. 3a o1 () i)
T"}.](-") (;,(-") T
k,
Fig. 3b
Fig. 3 [lustration of the way in which TF(s)'s are
related to Gy(s)'s and K,(s)
o ,:> 0 |—s G |
|k
Fig 4 A positive feedback of k, around TF\(s) 1s
equivalent to TFy(s) and G,(s) in series
IF, (s5) 1
e K=TF,.\(s)= 2 x 4
L LLLTC) RS (2) = 1=k, TE,(s) " G, (s) “)
The formulas to be used repetitively are

Rearranging equation(1 ) we get
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k=1 lrrFl(S)I"thﬂ £ (5)

2)TFxn(s)" Tty . 1 6)
1-k TF,(s)" G,(s)

T, (5) 1
3IK=TF,. 7
KO Tk 17,5) " G,(9) @

The conditions for usmg equations (5),(6) and (7) are :

1) the pole of G(s) that is chosen does not appear as
a zero in any of the preceding blocks
2) and also does not appear as a pole of TFx(s).

This method of solving for ks is casily programmable.
A flowchart for the method is given in Fig.5

Fig. 5 Flow chart depicting the procedure
3  EXAMPLES

(1) For an unstable plant shown in Fig 6 a which has
a
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)= 16+2) + 415 +10)

k= [UTF()]se =1

TF,(s) (. 80
1-k,TF,(s) G,(s) s*+14s+48

TFa(s)=

ky = [VTFA))z = 1

TF,(s) 1 80
TFy(s) = x =
1-k, TF,(s) G,(s) s+16
ky = [1F,@)],, =3N6
it TF,(s) " 1

T1-kTFRG) Gis)

The configuration of the system is shown in Fig 6 b.
(2) When a plant has complex poles as shown in
Fig7aanda

10

TF (s =
) s*+55° +3s7 +105+10

k, = [I7TF, (9], =
TF , ()=

ThG) 1 _ 10
1k TF,(s) G/(s) s +55°+8s+10

k,=[1/TF ,(8)],-,,, =04

TF, (s) 1 10

TF (s) = =
= Th6) Gs) 543

k,=[1/TF,(s)], , =02

S © N S
-k TF,(5)] Gyls)
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Fig 6a An unstable plant
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Fig, 6b The feedback configuration
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Fig. Ta A plant with complex poles
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Fig. 7b Feedback configuration

The configuration of the system is shown in Fig.7 b.

k=[UTK ()], , =1
(3)  For a plant with coincident poles as shown in Fig
8aandwilhnclosadlooplrmsfaFuncuon TF,(s) =
10 TF,(s) 1
TFI(S)'_' 4 3 2
ST #1257 +495% + 795 + 5]

10
X = 3
I=K.TE(s) G/(s) s'+11s° +385+ 4]
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Fig. 8a Plant with coincident poles

—>Q 0

Fig. 8b Feedback configuration
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Fig. 9a Plant with a zero
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Fig. 9b Feedback configuration
TF,(s) & 1 10

TF = =
ky=[1/TFy(s)],. 2 =01 TR/ G ) 546
e —2ae) el . L k,=[1/TF, =03
! 1-k, TF,(s) G,(s) s* +9s+20 =VTEE),-, =0
TF,(s 1
k,=[1/TF,(s)],. ,02 -— ‘TSF)(s)xG =10
4 4 4

The closed loop transfer function 1s shown in Fig. 8 b



(4) For plant which has a zero as shown in Fig 9 a,
the transfer function o be realized is;

s+2

TF, (%) =
1) $ +8.15° +21.75+ 202

This mansfer function is not feasible because the zero
of the transfer function is not contained in the plant. If
the transfer function fo be realized i

5+3
P48 #2175+ 20

TF (5} =

Then
k=[/TE )], =1

TFysr Tf-,q?.ir}___x 1 — 543
1=k, TF(s) G(s) s +41s+43

k,=[1/TF,(s)], , =06

TEG) 1]
k, TF,(5) G,(s) s+25

TF,(5) = 1=

ka=[UTF), , =05

TFi(s) 1

K= - X =
1k, T5,(5) " Gy(s)

The fecdback configuration is shown m Fig.9 b,

(5) For a plant shown in Fig.10 a which has a ransfer
function

20

TF, (5) = 3

5+ 787 #1458+ 20
The values for ks and K arc solved by the usual
method of malching the Coeflicients and the method
described in this paper,

USUAL METHOD

From Fig 10 b and Fig 10 ¢, we can get TF () in
terms of ks,

TFa=
2K

5"+ (4+ Kky)s” + (3 + Kk, + 2Kky)s + 2Kk,
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Companing the coefficients, we pet the eqiiilions
ZR=10, 4+Kk,=T,
IRk +2Kk, =14, Kk =20

Solving these equations we get the values of ks and K.
K=10; k=1, k,=04; k,=03

The shove steps clearly show that the method is neither
easy nar programmahle,

Mow the method proposed i this paper will be used 1o
calculate the same coefTicients.

k,=[UTF(s)], , =1

- TF (5) 1 20
TF.{s5) = —x =
I-k, TF(5) Gis) s +Ts+14
k.=[l/TF,(s)], , =04
TF  (s) = TF,(5) 110

|-k, TF,(5) " Gy(s) s5+6
ky=[1/TF,(5)], , =03

—igl) 1
-k TF,(5) G.(5)

The feedback configuration of the sysiem is as shown
m the Fig10 ¢ with the values of K and k's as
determined shove

4 ADVANTAGES OF THE PROPOSED
METHOD

A ot of computational efforl can be saved if we solve a
problan by the method described m this paper rather
than by the ususl method of matching the cocllicients
and solving for the required unknowns as clearly
demonstrated by the fith exaople. The need for
drawing block diagrams, block diagram reduction and
solving simultaneous equations s eliminated.
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Fig. 10a: Plant with its blocks

ﬁﬁ*,—h

Fig. 10b: Feedback configuration

2
Ha+1pe+3)

kys? +ky +2ky )8 + 2k
2

Fig. 10e: After block diagram reduction

The use of these formulas wherein the values for s are
substituted to get the values of kK's and K is more
efficient and systematic and straight forward than the
usual method especially when the plant is of higher
order.

5 CONCLUSIONS

An algorithm is presented n this paper to caleulate the
feedback gains in @ state variable feedback =system |
which is simple straight forward and efficient. The
simplicity and repetitive use of the formulas developed
make the method more appesling from the point of
view of defermination of the required gains quickly?
This is more so with regard to a plant of hgher ordc

and thus it is believed that this will be an extremely
useful design toaol,
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