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coefficient of speed fluctuation.

1 INTRODUCTION

The slider-crank mechanism is one of the most
frequently applied planar linkages in engineering
{1]. It is a special configuration of the four-bar
linkage with a slider replacing an infinitely long
output link. The most popular application of this
mechanism is the internal combustion engine,
wherein the input force is the gas pressure on the
piston. The same mechanism is widely used in
agricultural and food-processing machines as well as
in packing machines. In all thesc machines. but
especially in agricultural machines, the occurrence
of vanable resistance of relatively high values
creates a significant problem. This causes
considerable fluctuation in the motion of the whole
system. The coefficient of speed fluctuation is onc
measure of such fluctuations.

In order to calculate the coefficient of speed
fluctuation (which is a criterion for assessing the
performance of many machings) it is necessary 10
determine) the maximum and minimum values of
the machine speed, either by calculation or
measurement. Mcasurements can be done only on a
real machine after its manufacture and it is
undoubtedly a great advantage to be able to calculate
the speed maxima during design. To do so. the
cquation of motion of the mechanism must be
solved. This is a typical dynamics problem. in the
category of “forward dynamics™ problems [2]. It may
also be described as “time-response™ analysis. where
the geometry. mass and inertia of the mechanism are
known functions of position. as are the external
loads. driving forces and torques. Time response
analysis produces kinematic information about the
linkage (including velocities of different links) as
functions of position or time.

The problem discussed in this paper is a typical
dynamic case of time-response analysis. It requires

the solution of the equation of motion of the slider-
crank mechanism. which is a non-linear second
order differential equation. Methods exist to solve
such equations numerically. Among the many
available numerical integration techniques. onc of
the most widely used is the Runge-Kutta numerical
analysis routine [7.8.9). Although this method was
originally invented for first-order equations. it is
possible to apply it to higher-order systems. For the
Runge-Kutta method to be applied for such a system.
the higher-order cquation is first transformed into a
serious of first-order equations. These are then
solved one at a time. using the results of cach
previous integration as the input for the next onc.

However. a problem with the application of the
Runge-Kutta method. as for any other numecrical
method. to the equations of motion of a mechanism
is that the initial conditions may vary. Such methods
require that the solution process be repeated for cach
set of conditions.. This poses a general difficulty in
applying the analysis to a practical mechanism, The
present paper addresses the initial value problem by
introducing a method of solving the equation of
motion based on the method of small parameters and
on Fourier expansions.

2 EQUATION OF MOTION OF THE
SLIDER-CRANK MECHANISM

In order to determine the physical model of the

slidercrank mechanism (Fig. 1) the following

assumptions have been made:

- clearances are absent in kinematic pairs.

- the performance of slider-crank does not
affect the drive.

- link masses are concentrated at their centres
of gravity.

6. links are rigid.



Figure 1 Physical model of a slider-crank
mechanism.

Using Lagrange equations, the following equation of
motion of the slider-crank mechanism was derived:
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m, - the mass of the link (i=1,2.3)

G, - theweight of the link (i=1,2.3);

f, - thelength of the link (i= 1, 21,

= f| f .I':

M. - the driving moment,

P - the force acting on the piston (generally

periodic with period In).

3 SOLUTION OF THE EQUATION OF

MOTION

The equation of motion of the slidercrank
mechanism i5 a non-linear ordinary differential
equation. It is inconvenient to solve this equation by
analytical methods becanse of the complicated form
of the equation itself and of the cocfficients
pecurring in it. The method based on the expansions
of functions into Fourier series [3] is introduced in
this paper.

The equation of mation (1) could be also wrilten in
the following form:
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@ is the generalised co-ordimate (angle of erank
rolation). 1{8) is the mass moment of inertia referred
ta the crank (it is determined by the expression (2)),
M. is the driving torque (assumed as a COnstant
value), My(0) is the braking torque referred to the
crank (determined by the relation (3)). The
expressions 1(0) and My(H) are periodic functions of
the variable ©: their periods are 2. These functions
can be presented in the following form [3]:
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Applying the expressions (3) and (6), equation (4)
can be written in the following form:
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where expressions evidently depending on ihe co-
ardifate © are arranged on the right hand side of the
equation. They determine the deviations of the
functions 1(8) and My(0) from the mean values of L,
and M, i.c. they arc expressions causing motion
fluctuation of the system in steady state. Assuming
{hat motion fuctuation is a small value. a small
parameter () can be introduced on the right side of
the equation [4,5.6] giving,
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Changing the variables,
= and é-‘m%=mm’

the equation {11) was obtained:
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The above equation is a. first order non-linear
differential equation, where the independent variable
is the angle of crank rotation 6, and the unknown is
the angular velocity «. The solution of this equation
will enable the determination of the w(8) function.
In the steady state the solution of w(#) is a periodic
function with peried 2r or integer multiple of 2z
The solution will be assumed io be of the following
form |4,5.6]:
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where, @, is the constant mean crank angular
velocity resulting from the drive, o(8) are periodic
functions of the period 2n (i=1, 2, ), Substituting
(12) into equation (113 will give a general equation
in the following form.
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By grouping the expressions of the same power of

small parameter and using only the elements up to
the & square, the following expressions are obtained:
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Equation (13a) cnables the determination of the
driving torque M., that should be applied to the
crank 10 overcome the load;

M= -My (14

Equations (13b) and (13c) constitute a set of
equations enabling the determination of successive
approximate  solutions o(0) and ©:(0) 1o the
Function i),

In order to solve the equation which determines the

first approximation, the right side of equation (13k)
was expanded into a Fourier series:
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(the constant term of the expansion equals zere).

Through equations (13b) and (15) the following was

obtained:
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Expression (16) allows us to determine the perindic
solution with the period 2n of equation { 13b):
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Equation (13c) can be solved similarly, The right
hand side of the equation was expanded into g
Fourier series:
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In this case the constant expression is also equal to
zero, and. because of the periodicity o, and 1{9) the
following relations eocur:
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Periodic solution with 2% period of cquation (13c)
has the following form:
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Substituting in equation (12) the value of the small
parameter & = 1 [4.56] and taking into
consideration the expressions determining o, (8) and
a8, i.e. equations (18) and (20, the final formula
wis obtained which shows the dependence of
angular velocity on the angle of rotation:
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In the above calculation only the two first
approxamations of angular velocity @(0) and cw-(0)
were taken into account, If greater accuracy is
required, formulae can be developed analogously.
determining subsequent approximations connected
with higher powers of the small parameter .

In formula (21) an infinite sum of expressions
occurs, which are the expansions inte the Fourier
scrics of appropriate functions. The accuracy of the
calculations  also  depends on the number of
expressions in this sum that are taken into account
in specific calculations.

It should be stressed that for expansion of a function
into the Fourier series it is nol necessary 10 know the
mathematical relation determining this function. It
is enough to know the wvalues of this function at
some points, Thus it is possible to use the Runge's
scheme  for  determination of the expansion
coefMicients, This makes it possible 1o carry oul the
above analvsis in the case when no mathematical
formula determining the braking torgue My(0) is
available. This has a great significance in machines
for which it is difficult to give an analyvtical formula
fior the function My(().

4 DETERMINATION OF THE
COEFFICIENT OF SPEED
FLUCTUATION

As it appears from the formula detcrmining the
relation between the angular veloaity and the angle
of rowtion (21). the velocity changes around the
mean value o, during a stable cvcle motion. The
cocfficient of speed fluctuation is defermined by the
formula [1]:
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where, i, i5 the value of maximum velocity during
the working cvcle, ., 15 the value of minimum
velocity, @, is the mean value. Thus for the
determination of the coefficient of speed Muctuation
the maximal and minimal values of the angular
velocity should be detersined. This may be done by
comparing the values of angular velocities for
different angles of rotation obtained by the formula
{21). Ii 15 obvious thai a compuier should be used to
perform such calculations.

5 DISCUSSION
The method here described may now be compared

with less general numerical methods of solving the
equation of motion of a slider-crank mechanism to

obfain its coefficient of fluctuation. [t is quite
obvious that the mechanism will be in penodic
maotion with certain mean values of wvelocity or
acceleration during its cvcle but the initial
conditions are usually not known. The “zero™ initial
conditions cannot be used, since the analysis is done
for the steady-state situation and not for the initial
acceleration or final deccleration of the sysiem. The
method that avoids this problem is a method of
small parameters, by which the solution is songht
around a certain value. The case presented scemed
1o be ideal for this particular method. The steady
mean value of the crank angular velocity resulting
from the drive is usually known, and so il 5 required
only to look for deviations from this mean value
(equation (12)). This method leads w0 a set of
cquations presented as (13) in this paper. Equations
{13b) and {13¢) are non-lincar first order differential
equations and a numerical routine may be used in
order to solve them. The Runge-Kutia method might
be uscd at this point, taking the result of intcgration
of equation (13b) as the input to equation (13c)).
However. expansion of functions imo Fourier series
provides a more straightforward method that
converts these equations into a simple form easy o
infegrate, Once this expansion 15 done the solution is
easy 1o obtain, The method presented overcomes the
difficulty with the initial conditions of the
mechanical sysiem in a sicady-state situation and
also avoids the laborious numerncal integration of
the differeniial equaiions.

[ CONCLUSIONS

A method for the solution of the equation of motion
of slider-crank mechanisms has been presented. The
method uses the concept of small parameters and
also requires the expansion of functions by Fourier
serics. Hemce, the relation between the angular
velocity and the angle of rotation of the crank, which
is the soluiion of the equation of moiion, is obtained
in the form of a Fourier serics. It is thus possible o
calculate the cocfficient of speed Muctuation for any
slider-crank mechanism, A compuier is nesded for
the application of this method. The method creates
the basis for an analysis of the influence of vanous

factors, cg. the working conditions or the
construction parameters of the system. on the
coefficient of speed fluctuation.
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