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This article proposes a new modelling scheme using extended radial basis function (RBF) and adaptive neuro-
Suzzy filter for handling nonlinear uncertainties of an air motor servo valve. This model combines the fast model
development ability of RBF and the adaptation capability of adaptive neuro-fuzzy inference system (ANFIS) used
instead of the well known conventional modelling techniques. The ANFIS structure provided parameter
partitioning and better performance under transient response to handle the problem of disturbance attenuation.
The pneumatic H-bridge, characterising a pneumatic servo valve has been devised for speed and direction control
of the motor and the system characteristics conveniently divided into three main regions; of low speed (below 390
rev/min), medium speed (390 to 540 rev/min) and high speed (540 to 680 rev/min). The system is highly non-linear
in the low speed region and hence the need to use an adaptive intelligent based modelling technique arises.
Simulation results has proven that for an air motor system with uncertainty and perturbed noise, the RBF-ANFIS
model scheme performed well and out past its conventional counterpart by far.
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1 INTRODUCTION

The nonlinear friction, especially the friction
behaviour at velocity reversal, is a big obstacle for
high precision motion model and control of a
pneumatic actuator system. Thus, the dynamic model
structure for friction compensation is necessary. The
valve nonlinearities are complicated and it is
necessary to consider their integral nonlinear effect.
The term conventional control is used to refer to
theories and methods that were developed in the past
decades to control dynamical systems, primarily
described by differential difference equations and
mainly used PID controllers. In fact, it is well known
that there are control problems that cannot be
adequately formulated and studied in the form of
differential equations. To address these problems in a
systematic way led researchers to develop a number
of methods that are collectively known as intelligent
control methodologies. In this context, the term
intelligent control has come to mean some form of
control using fuzzy logic, neural network and/or
genetic  algorithm  methodologies.  However,
intelligent modelling does not restrict itself only to

those methodologies. Research into intelligent
modelling incorporates and integrates different

techniques and concepts from different disciplines
including identification, modelling and simulation
theory, computer science and cybernetics.

1.1 Conventional Modelling Techniques

Ir) this investigation, parametric identification of the
air motor system with simple least squares and

recursive least squares techniques is considered. The
experiments involve development of plant model,
predicted model, computation of error between the
plant model and the predicted model and analysis of
correlation function tests.

1.2 Simple Least Squares in the Low Speed
Region

Fig. 1 shows the actual and predicted response of the
system at low speed, and Fig.2 shows the
corresponding output error.

Figure 1: Response of low speed data to
simple least squares

Figure 2: Error between actual and
predicted output

Linear least squares or simple least square is a
conventional method, which finds the line
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minimising the sum of the squared distance between
the observed points and the fitted line. This method
of fitting ensures that the estimates of the slope and
the intercept parameters of the model have some
desirable statistical properties. The experiment
involves using the MATLAB program that loads in
data that contains the inputs and outputs the air motor
system. Using this data, the system model can be
estimated. The best mean-squared error level of
0.02222505 was achieved. The order of the system
can be approximated to be about 2 or 3. Using this
original data, the system can be estimated. By using
training and test data, auto correlation function
results were observed to be white. The simplest
model that showed the best fit was an ARMAX

model with and or ARMAX(Z 21 ]).

1.3 Recursive Least Squares in the Low
Speed Region

In this section, the MATLAB program was used
again to load the input-output data and run it using
RLS algorithm. The objective is to look for the
minimum value of the integral absolute errors. The
concept of this approach is to plot the actual and the
predicted output and see how the parameters
converge within RLS algorithm. Main parameters are
the system’s input-output data, the forgetting factor
and the covariance matrix. The algorithm is
developed from the following pseudo codes:

P=P—P*X*((I+X'*P*X)' (-1))=x"*P 0
theta = theta + P+ X *(yt — X" * theta )

The RLS type used in this study is the forgetting
factor type. The concept of forgetting is such that
older information is gradually discarded in favour of
the most recent information or giving less weight to
older data and more weight to recent data [1]. RLS
results are shown in Fig. 3. The model order was
found to be in the order of 3. The results were
achieved using RLS with a forgetting factor 0.95.

peed (RPM

Figure 3: Actual and predicted output

1.4 Intelligent based modelling techniques

Considerable research is currently being devoted to
intelligent modelling techniques for systems that are
ill defined, poorly understood or highly nonlinear

such as pneumatic drives. However, application of
intelligent modelling to pneumatic drives is not wide
spread. Knowledge of the system behaviour is
required for construction of a scheme for modelling
and simulation of the pneumatic system. Radial basis
function neural network (RBF-NN) is a special class
of multi-layer feed forward networks, widely used
with supervised learning algorithms to solve non-
linear engineering problems. Radial basis networks
may require more neurons than standard feed
forward back propagation networks, but often they
can be designed in a fraction of the time it takes to
train standard feed forward networks. They can also
work best when many training vectors are available.
Both simple NN and adaptive neural fuzzy inference
system (ANFIS) can be used to identify a dynamic
system, but ANFIS has two preferred merits over
simple NN for its ability for parameter partitioning.
ANFIS has the ability to integrate process dynamics
as well as human knowledge expressed in linguistic
form. Results show that ANFIS has faster learning
speed and higher identification accuracy than a
simple NN identifier. The strategy adopted here with
a neuro-fuzzy system is to find the parameters of a
fuzzy system by means of learning methods obtained
from NNs. A common way to apply a learning
algorithm to a fuzzy system is to represent it in a
special neural-network-like architecture. Then a
learning algorithm, such as back propagation, can be
used to train the system. Adaptive neuro-fuzzy
system architecture with two inputs and one output is
shown in Fig. 4. The single —value fuzzification,
Gaussian  membership  function, and product
inference and centre average defuzzification in the
fuzzy logic are adopted.
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Figure 4: Sugeno-Mamdani type fuzzy inference

systems

The fuzzy model in Fig.4 can be seen as a layered
structure (network), similar to artificial neural
networks. Hence this approach is usually referred to
as neuro-fuzzy modelling [2].

1.5 Related work

Many attempts have been made to introduce
simplified models in order to construct a model-
based air motor controller [3]. A common method
has been to approximate non-linear dynamics of the
air motor into linear (ideal) models assumed to have
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sufficiently  small uncertainty [4]. Studies on
modelling of pneumatic systems, especially locally
lincarised modelling, can be found in the literature
[5]. Linear and nonlincar dynamics of the dynamic
model of a pneumatic actuator forms the platform
and the launching pad point of the motion control
algorithms of the air motor system in this study. [6].
There are numerous researchers who have focused
their efforts on different issues of modelling of
pneumatic servo systems. The issues include but are
not limited to the following:. Air flow: a normal
pneumatic valve does not behave like a simple
nozzle. The mathematical model of the valve airflow
must be produced specifying the flow capacity of the
pneumatic  fluid power valves. Valve modelling:
there is little work found in the literature on this
topic. The valve’s input/output  behaviour has
significant influence on the servo control system.
Analysis of pneumatic valve model parameters
reveals that, the valve model contains two friction
parts, namely static part and dynamic part. Friction
parameters may be identified using evolutionary
strategies [7, 8]. Air motors are compact, lightweight
sources of smooth power with relatively  less
vibration. They are not affected by continuous
stalling or over load; they start and almost stop
instantly. They play a very significant part as prime
movers because they are relatively cheap, easy to
maintain and have versatility of variable speed and
high starting torque. They are intrinsically safe in
hazardous arcas and will operate in exceptionally
harsh environments. When a state feedback
controller is used to control pneumatic servo
systems, it is impossible in practice to determine the
control gains theoretically because of the high
nonlinearities of the system and the uncertainty in
system modelling. Knowledge of the system
behaviour is required for construction of a scheme
for modelling and simulation of the pneumatic
system. Radial basis function neural network (RBF-
NN) is a special class of multi-layer feed forward
networks, widely used with supervised learning
algorithms to solve nonlinear engineering problems.
This paper reports on recent advances on scientific
findings and application of intelligent techniques as
alternative methods of modelling and simulation of
an air motor. The paper is organized as follows:
Section 2 provides a brief description of the
experimental set up utilized in this study. Section 3
briefly describes the modelling approach. Section 4
presents experimental assessment of the performance
and the implementation of the RBF-NN modelling
strategy. The paper is concluded in Section 5.

2 SYSTEM SET UP

The computer (PC) with the auxiliary hardware is
used to source out and read all plant devices. All
electrical devices are externally powered. At the
centre of the motor is a tri-lobed cam mounted on the

motor output shaft. There are four pistons radially
positioned and acting on the cam, which reciprocate
in fixed cylinder liners. Rolling contact in the cam is
made by scaled needle roller bearings. The action of
the piston on the cam converts linear force to
rotational motion. As the piston reciprocates, a
channel in the face of the seal pad connects two ports
formed in the liner. A series of channels are formed
in ecither flank of the motor-cylinder block. The
channels link the control port in the cylinder liners to
the piston chamber of the adjacent end piston. An
annular manifold is formed in each of the flank faces
of the cylinder block. These manifolds are connected
to motor inlet/output ports. A flow control valve is
linked to the motor ports. The function of the valve is
to control the direction and rate of airflow through
the motor. Normally, actuation of the valve is
achieved by a proportional solenoid but in this work,
the solenoid has been replaced by a pneumatic H-
bridge. A cutaway view of the motor is shown in Fig.
q
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Figure 5: Cutaway view of radial piston air
motor

Coding the control algorithm s straightforward.
However, it is always advisable to consider factors such
as realization, actuator nonlinearities and computational
delay to minimize controller sensitiveness to errors, An
optical encoder is mounted on the extension of the
output shaft of the motor. The encoder transmits
information that allows motor speed and direction
to be detected. An optical encoder is a non-
contacting rotary to digital converter. The optical
converter is useful for position feedback and
manual interface. The encoder converts real time
shaft angle, speed and direction into Transistor-
Transistor Logic (TTL) compatible quadrature
outputs with or without index. The motor speed is
measured by a shaft encoder, which represents the
measured speed in terms of frequency. The encoder
uses optical sensors to provide a series of pulses
that can be translated into motion, position or
direction. A stationary light emitting diode (LED) is
mounted so that its light will continually be focused
through the glass disk. A light activated transistor is
mounted on the other side of the disk so that it can
detect the light from the LED. This disk is mounted
to the shat of the motor whose position is being
sensed, so that when it turns, the disk turns. When
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the disk lines up so that the light from the LED is
focused on the phototransistor, the phototransistor
will go into saturation and an electrical square wave
pulse will be produced. The frequency to voltage
(F2V) converter transforms the frequency from the
shaft encoder to a voltage in the range 0 to 5 V.
This analogue voltage is then converted into binary
form by an A/D converter, which the computer can
now read. The controller uses this measured speed
along with other variables to generate a control
signal. A D/A converter converts the control signal
from binary into analogue voltage. This analogue
voltage when applied to the pressure control valve
(PCV) either increases or decreases the air pressure
to the motor, thus controlling the speed of the
motor. Many of the applications of neural networks,
particularly in the area of non-linear system
identification and control, reduce the problem of
approximating unknown functions of one or more
variables of discrete measurements [9]. A number
of authors have established that multi-layer feed
forward neural networks, with a variety of
activation  functions,  serve as  universal
approximators. In the case of modelling the low
frequency dynamics of the air motor, RBF-NN has
been chosen. This is a form of neural networks,
which can be designed very quickly and find an
exact solution. A trade off is that the behaviour of
such networks may be extremely complex.

3 SYSTEM IDENTIFICATION

Before controlling the system, the system must be
identified. System identification is one of the most
fundamental requirements for many engineering and
scientific applications. The objective of system
identification is to find exact or approximate models
of dynamic systems based on observed input and
output data. These input and output data can be
obtained through experimental work, simulation or
directly collected from the plant. Many identification
methods have been reported in the literature. These
include least squares (LS) method, prediction error
method (PEM) and recursive least squares (RLS)
method. Some of these methods, however, have the
potential risk of getting stuck at local minima, which
often result in poorly identified models. The risk
increases as the parameters of the AR part are close
to the MA part [10]. For highly non-linear
optimisation  problems, methods to avoid
convergence to local minima are sought. The
parametric identification of the air motor is realised
in this investigation by minimising the prediction
error of the actual output and the predicted output. In
this article system identification has been used to
obtain local parametric models for the plant in three
distinct regions, termed low, medium and high speed
region. Models obtained in the high speed and
medium speed regions are good. However, the model
obtained in the low speed region is not very good.

There are two main reasons for models obtained at
low speed region:

. Hysteresis is more dominant in the low
speed region than in medium and low speed regions
. The plant is very sensitive in this region and

the combination of these two effects made the plant
rather difficult to model using conventional
modelling approaches.

The results obtained from the low speed leads to
some interesting conclusion that, the plant need to be
modelled using some form of intelligent modelling
techniques to deal with the dead band and hysteresis,
which is strongly present in the region. As a result,
the need to use neural networks, to model low speed
dynamics of the air motor system sufficed.

Once a model of the physical system is obtained, it
can be used for solving various problems such as, to
control the physical system or to predict its
behaviour under different operating conditions [11].
A number of techniques have been devised by many
researchers to determine models that best describe
input / output behaviour of a system. In many cases
when it is difficult to obtain a model structure for a
system with traditional system identification
techniques, intelligent techniques are desired that can
describe the system in the best possible way [12].
The system characteristics are divided into three
main regions, namely low speed (below 390
rev/min), medium speed (390 to 540 rev/min) and
high speed (540 to 680 rev/min). The system is
highly non-linear in the low speed region and hence a
neuro-model using extended radial basis neural
networks is proposed.

3.1 RBN-NN-Learning Algorithms

A generalized regression network (GRNN) is
proposed to model the system in the low speed range.
The GRNN is basically a two-layer network with a
radial basis function in the first layer and a special
linear output layer [13]. The task of a learning
algorithm for the RBF is to select the center and find
a set of weights that make the network perform the
desired mapping. A number of learning algorithms
commonly used for this purpose include but not
limited to the following:

. Random center selection and a least square
algorithm

. The orthogonal least square

. Clustering and a least square algorithm

. Nonlinear parameter optimization

In this work parameter generalization benchmarks
comparing the performance of feed forward
networks, GRNN are provided. The purpose of these
benchmarks is to aid the user in selecting the
appropriate algorithm for their problem. For training
purposes, the input patterns (collected data) were
normalized to unit length to ensure they fell within
the required range of -1 to 1. Each network was
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trained on the profile of a normal event data set. split
into training, verification and test set. to allow
precise network prediction accuracy. Subsequently
the networks were given a series of dataset that they
have never seen before, to determine their arbitrary
pattern generalization and their ability to track the
desired output. . The first layer is designed to receive
a set of input data for the first 500 data points. The
second layer receives inputs for data points ranging
from 501 to 1000 data points. The first layer has
tangsig output in the hidden layer and the second
layer has a logsig transfer function in the hidden
layer output. Details of these algorithms can be found
in [14]. A diagram of the GRNN architecture is
shown in Fig 6.
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Figure 6: Air motor GRNN structure with
Gaussian node

The dimensions in Fig. 6 have the following
definitions:

. PR represents an Rx2 matrix defining the
minimum and maximum values of R inputs

. IW represents the new input weight matrix

. Q is the number of neurons in the layer

. LW is the new QxR weight matrix

. bisanew Qx| bias vector

. n is the number of network layers

. |dist| denotes distance between vectors

In Fig. 6, the "dist" box accepts the input P, plus the
input matrix IW'' and produces a vector having
Q'elements. The elements are the distances between
the input vector and vectors IW'' formed from the
weight matrix. The bias vector b'and the output of
the are |dist| combined with the MATLAB operator

(dot*),  which does the element-by-element
multiplication. The selection of a representative
training set is very important when training a neural
network (NN). The most critical ability of an NN is
its ability to generalize to data to which it has never
been exposed [15]. For this generalization to be
realized, a training set must be constructed, which is
very representative of the entire dataset. For this
study, the generation of the training set was done
through an experimental data collected from the air
motor rig.

Figure 7: Performance curve showing RBF
convergence

Fig. 7 shows the net performance curve on training
set. It can be observed that the network tends to
converge with sum-squared error (SSE) of 0.022
after 325 epochs. After convergence has been
achieved, the network is tested with estimating data
set of the remaining 500-input/output data set that the
network has never seen. An SSE of 0.037 was
obtained after 325 epochs, indicating a 1.5% error.
The results are convincingly promising and show that
RBF network arbitrarily approximates and learns the
parameters in the hidden layer together with those in
the output layer and can hence be implemented for
further model development. It must be noted that for
best network measurement and performance results,
the mean squared error is a good criterion to use.
However, in this study, SSE produced performance
measurement results are adequate enough to be used
for further model development.

4 MODEL ANALYSIS AND
IMPLIMENTATION

The input variables of the NNs were chosen on the
basis of physical laws that describe the behaviour of
the pneumatic motor and on the basis of the effect of
the inputs on parameters and performance of NNs.
Moreover, the effects of functional form of input
variables were tested. Following these tests, together
with the maximum air pressure (4.5 bar), some
combinations of input parameters, measured at
variable load were chosen: maximum speed, medium
speed and low speed. Maximum pressure was chosen
because it is a good indicator of the fluid state while
the value of quantities of speed inputs change due to
variable load demand. Three different RBF
algorithms were investigated in order to determine
the type of network most suitable for modelling the
air motor system.

4.1 Non-parametric Identification Techniques

In a system identification exercise the input signals
must be persistently exciting so that they provide
sufficient information in the response.  Various
modelling techniques can be used with neural
networks to identify nonlinear dynamic systems.
Nonlinear autoregressive moving average process
with exogenous input (NARMAX) model (also
known as error model) is one of them. Literature has
revealed that, if the plant input and output data are
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available, the NARMAX model is a suitable choice
for modelling nonlinear systems with suitable neuro-
learning algorithms. The NARMAX model is
mathematically expressed as:

y(t) = f(y(t - Dyt -2)uy(t-ng), ut- Dt -2), 2)
sau(teng ) e(t=1), e(t—2),-- e(t—n,)] +e(t)

where:

u(t),y(t)and e(t)represent the output vector
determined by the past values of the system input
vector, output vector and noise respectively
0, N ,and n,represent associated maximum lags

respectively, f(C) represents the system mapping
constructed with a NN such as multi-layered
perceptron  (MLP) together with appropriate
activation function and learning algorithm [16].

If the model is good enough to identify the system
without including the noise term, then it can be
represented as NARX model and expressed as:

5’(t):f[(Y(t' l)iy(t'z)v9y(['"\)- (3)
u(t-1),u(t- 2),4--,u(t—n“ )] +e(t)

4.2 Validating the Model

An identified model should never be accepted until it
has been thoroughly validated. A common measure
of predictive accuracy of model used in system
identification is to compute the one ahead step
(OSA) prediction of the system output. This can be
expressed as:

¥(1) = f{u(t), u(t-1),--- u(t-n, ), y(t-1 ),++.y(tn ) 4)

where (') represents a nonlinear function, u and y

are the input and output samples respectively. The
residual or error between the output and its
prediction is given by:

&(t) = y(t) - y(t) (5)

Ofteny(t) will be a relatively good prediction of
Y(t) over the estimation set, even if the model is

biased, because the model was estimated by
minimising the prediction errors. Another method to
evaluate the predictive capability of the fitted model
is to compute the model predicted output (MPO),
This can be expressed as:

Y4 (0 = fQu(t), u(t-1),--u(t-n,), y,(t-1)- Y,(t-n,)) (6)

£,() = y(t) -y, (1) (7)

If only lagged inputs are used to assign network input
nodes, then:

(1) = §,4(t) (8)

The implication that if the fitted model behaves well
for OSA and MPO does not necessarily imply that
the model is unbiased. The prediction over a different
set of data often reveals that the model could be
significantly biased. One way to overcome this
problem is by splitting the data set into two sets,
estimation set and test set. The first half (estimation
set) is used to train the NN and the output computed.
The NN usually tracks the system output well and
converges to a suitable error minimum. New inputs
(test set) are presented to the trained NN and the
predicted output is observed. If the fitted model is
correct, then the network will predict well for the
prediction (test) set. In this case the model will have
captured the underlying dynamics of the system. If
both OSA and MPO of a fitted model are good over
the estimation and prediction data sets, then most
likely the model is unbiased. A more convincing
method of model validation is to use correlation tests.
If a model is adequate then the prediction error
&(t) should be unpredictable from (uncorrelated with)

all linear and nonlinear combinations of past inputs
and outputs.

4.3 Correlation Functions

An alternative approach for model validation
constitutes auto correlation and the cross correlation
tests. If a model is adequate then the residual or
prediction errors &(t) should be unpredictable from

(uncorrelated with) all linear and non-linear
combinations of past inputs and outputs. Derivation
of simple tests, which can detect these conditions, is
complex, but it can be shown that for non-linear
systems the following five-correlation conditions
should hold [17]. A pseudo-random binary sequence
(PRBS) input signal is used to excite the system and
1000 input/output data points are collected for
estimation of the model parameters. To ensure that
the model is an adequate representation of the
characteristics of the system, it is validated through a
number of tests. These include:

Significance of parameters: An estimated parameter
is significant if it is greater in magnitude than its
corresponding standard deviation.

Correlation tests: For a model to be adequate, the
correlation tests in equations (9) to (13) have to be
satisfied.

¢IIB(T) = E[C(t—r)ﬁ(l)]:ﬁ(r) 9)
¢“E(T)=E[U(t—f)£([)]=() V1t (]0)

¢, (D =E[(*(t-0)-u’(t)e()] =0 vr  (11)

u‘e



[3°]
3}

b . (1)=E[u*(t-1)-u’ () (1)]=0 Vvt (12)

ue
Opuy (D = E[(e(De(t=1-1)~u(t-=1-1)]=0 120 (13)

where, ¢, (t)indicates the cross-correlation function
between u(t)and &(t) eu(t)=¢e(t+Du(t+1)and 1s
an impulse function. For linear models, however,
only the first three tests above are sufficient.
Theoretically, the above tests indicate that the auto
correlation function (ACF) of the residuals should be
white, and the cross-correlation (CCF) between the
input sequence and a white noise sequence should be
zero. In practice, the approximate 95% confidence
interval at il.%.-’\,/ﬁcan be used to test the above.
Testing model variance over a different data
sequence. It is important to note that it is easy to fit a
model to data that appears to predict well over the
data set used for estimation. Even bad models exhibit
this property. It is much more difficult to get correct
model, the model that describes the dynamics of the
underlying system and not one data set.

44 RBF Model Development

Since all validity correlation tests are acceptable, the
next step is to develop the system model using real
input/output data. In this case, there are 500
input/output data points providing a set of 500 radbas
neurons. It is observed that untrained radbas neuron
vaguely detect input data vectors presented to them
but cannot arbitrarily interpolate reasonably well, to
create an explicit radbas profile. The next step is to
train 500-input/output data set out of 1000. The
trained data is then simulated with the remaining 500
unseen data set to produce input/output radbas
network (PT).

-

[

Figure 7: Radial basis function

Fig. 8 shows how as many radbas neurons as there
are input vectors in P can be created. This provides a
set of radbas neurons in which each neuron acts as a
detector for a different input vector. Therefore, if
there are Q input vectors, then, there will be Q
neurons.

The transfer function for the radial basis neuron is:

Radbas: (PT) =¢ (PT)’ (14)
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Figure 8: RBF (P, T)

The radial basis function has a maximum output of
0.8 when its input is 0. As the distance between
weight and input decreases, the output increases.
During training, the neuron was given a bias 'b'of
0.1 and a spread of 8.326. The net input can be
expressed as:sqrt(—log(0.4)) . Therefore its output
would be: 0.1x8.326x0.61.e. 0.5 for any input

vector at vector distance of 8.326 (0.8326/b ) from
its weight. Each bias in the first layer was set to
0.8326 per spread. This gives radial basis functions
that cross 0.5 at weighted inputs of + spread . This

determines the width of an area in the input space to
which each neuron responds. Fig. 8 also shows how a
single radial basis transfer function (RBTF) can be
utilized to represent a radial basis output for a
selected data set. This is the initial stage to design
RBF networks and subsequent radbas neurons are
then created one after the other until a satisfactory
radial basis model is achieved. For this study, 3 data
sets were selected; representing three ranges of the
air motor speed and their respective outputs are as
presented in Fig.9.
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Figure 9: Three & five - RBF model

Fig. 9 shows radial basis outputs for these data sets
with their weighted sum of responses. Three radial
basis necurons do not give a perfectly smooth
weighted sum of RBTF envelope and to overcome
this shortfall, a radial basis neuron insertion
technique is adopted, whereby extra two RBTFs are
added at the beginning and the end of the weighted
sum of RBTF envelope. The results give a linear
five-RBTF model, which is adequate to represent the
response of the air motor for the whole data range
(low, medium and high speed range). Also, in Fig. 9
a comparison of a three - RBTF model between a
five - RBTF model and their respective weighted
sum of RBTF responses is shown. A response with
many radial basis neurons, give smoother perfectly
more linear weighted sum of RBTF output.
Therefore, for this study a five - RBTF model (Fig.
9) is the obvious choice. However, there is a trade off
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between the two choices, a three — RBTF model
gives faster response with nonlinear weighted sum of
RBTF envelope while a five — RBTF model gives a
slower response with a perfectly linear RBTF
envelope. During training, three — RBTFs converged
in 100 seconds while five — RBTFs converged in 325
seconds. This means that five - RBTFs are slower to
operate because they use more computation to do
their function approximation or classification.

RBTF errvelope converied 1o Speed
00

80
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".-"-"mr

Figure 10: Air motor five - RBTF linear
output

Fig. 10 shows the output of the five - RBTF, which
represents the air motor speed over the whole data
set. Further observations and analysis of Fig. 10
show that using radial basis algorithms enables the
air motor system to attain linear operating conditions
in less than 200 seconds. In a practical context, these
results exhibit instantaneous starting characteristics.
These results demonstrate that neural networks are
able to handle nonlinearities due to system’s
hysterisis and can thus be used to control the air
motor to attain set point speeds.

4.5 Extended RBF recurrent model

Simple radial basis function network produced
reasonably good and promising results. In analogy
with conventional RBF feed forward network and the
development of RBF recurrent networks then
suffices. The design of a context layer to which
patterns can be copied directly following the learning
algorithm, provides for a good comparison of trained
inputs of the second layer. This is achieved by the
design of the staggered two-delay outputs fed back as
inputs of the first layer and second layer respectively.
A diagram of the extended RBF architecture is
shown in Fig 11.
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Figure 11: Air motor two -layer recurrent
RBF network

Tapped delay lines consist of a complete memory
temporal encoding stage followed by a (dot*) radbas
operator. The tapped delay line (TDL) is needed to
make full use of the designed neural network. The

output of the TDL is an N-dimensional vector, made
up of the input signal at the current time, or the
previous input signal. The combination of a TDL and
a linear network such as purelin, which create a good
linear filter. This has the advantage of ease of
mathematical analysis and training regimes. As a
result, the three networks of the compared algorithms
all have tapped delay lines. The dimensions in the
above have the following definitions: PR represents
matrix defining the minimum and maximum values
of R inputs, TDL tapped delay lines, S number of
neurons in the layer, IW, new input weight matrix,
LW the layer matrix, output vector, b new  bias
vector, n number of network layers and D number of
delay lines.

4.6 Implementation and Results

The air motor system has three approximate speed
regions. The low speed region ranges from 0 RPM to
350 RPM, non-linear region. The medium and high
speed regions are approximated from 350 RPM to
540 RPM and 540 RPM to 600 RPM respectively,
linear region. Collected data, corresponding to the
above speed ranges are chosen to be a set of PRBS
shifting between [-850 and —900, -900 and —-1050, -
1050 and 1300] counts for low, medium and high
speed respectively. Figure 12 shows the ramping up
and ramping down characterisation of the air motor
speed within predefined DC counts regions.

Figure 12: Ramp up and ramp down
characterisation of air motor system

This characterisation is desirable to because when the
ramp matches the ramp down characterisation, it is a
good indication that the system is identifiable by
conventional methods, especially within the bounded
regions. Furthermore, the bounded regions help to
determine the operating regions of the air motor. For
ease of clarity, parameters shown in Fig. 12 can be
presented in a tabular form. Table 1 shows the three
regions in terms of ADC count, DAC count and
RPM.

In this investigation, identification of the air motor
system using conventional methods such as simple
least squares and recursive least squares techniques is
considered. The experiments involved development
of plant model, predicted model, computation of
error between the plant model and the predicted
model and analysis of correlation function tests.
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Table 1: Boundary definitions of three speed

regions
Input pressure Output speed
Region (DAC counts) (ADC counts) RPM
High speed 1100 to 1300 1450 to 1500 450 to 700
Medium speed 900 to 1100 1200 to 1450 350 to 430
Low speed 700 to 900 800 to 1200 0 to350

The results obtained from the low speed leads to
some interesting conclusion that, the plant need to be
modelled using some form of intelligent modelling
techniques to deal with the dead band and hysteresis,
which is strongly present in the TLEIOI‘I

Figure 13: Actual and predicted output

Results of various modelling techniques have been
validated through a range of tests including
input/output mapping, training and test validation,
mean squared error, sum square error for RBF and
correlation  tests. Modelling of systems with
nonlinearities and little physical insight is a domain
of  black-box  models  showing  universal
approximating capabilitics such as RBF -GNN.
Pneumatic drives belong to this kind of systems.
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Figure 14: Error between actual and predicted
output
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Figure 15: Auto-correlation test
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Figure 16 Cross-correlation of residuals and
input
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Figure 17: Cross-correlation of residuals
square and input
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Figure 18: Cross-correlation of residuals
square and input square
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Figure 19: Cross-correlation of residuals and
(input*residuals)

Comparing the results with those Section 1, reveals
that intelligent modelling techniques such RBF-GNN
perform better than simple least squares and RLS in
modelling and identification of air motor dynamics at
low speed. Furthermore, the introduction of hybrid
intelligent modelling techniques such as ANFIS has
shown that performance achieved using neuro-fuzzy
is much faster than RBF-GNN alone. It is therefore
cvident to conclude that, intelligent modelling is a
partnership of modelling techniques such as RBF-
GNN and ANFIS, where cach of the partner
contributes to a distinct need of a problem performs
better than each partner alone. Intelligent modelling
techniques are also evolutionary rather than
revolutionary and in this respect, the principal
contributions arc  complementary rather than
competitive.  Accordingly, intelligent modelling
approaches are an alternative to conventional
techniques and hence their application must be tried
when there is a prove that conventional methods do
not yield meaningful results.

5 CONCLUSION
A strategy of applying the radial basis function

networks to recognize time varying patterns has been
presented. The ability of neural networks has been
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used in the identification of a pneumatic motor in the
low speed region. The effectiveness of this strategy
was validated using model validity correlation tests,
which were all within the 95% confidence limit.
Neural network modelling and simulation techniques
presented in this paper show that, given sufficient
number of hidden neurons, the RBF-NN can
approximate a continuous function to an arbitrary
accuracy. However, because the number of radial
basis neurons is proportional to the size of the input
space, and the complexity of the problem, RBF-NN
algorithm can be prohibitively too large. Tuning the
various number of parameters, i.e. radius, centers etc,
can get quite complicated as is shown in combining
regression trees and RBF  network insertion.
Choosing the right centers (for the hidden layer) is of
critical importance although there are a number of
ways to solve this unsupervised learning problem,
such as using competitive learning. A new recurrent
RBF network, which takes the network input and
past outputs as augmented input adaptively, learns
the parameters in the hidden layer together with
those in the output layer. This has the advantage of
case of mathematical analysis and training regimes
and outstanding performance in recursive function
approximation and estimation. It is therefore
recommended that, parametric and non-parametric
models of the air motor system based on intelligent
modelling techniques, thus developed and validated
will be used in subsequent investigations for the
development of control strategies for air motor
control at low speed regions.
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