Available online at www.sciencedirect.com

EUROPEAN
-cmnc:@nlnncﬂs JOURNAL
) OF OPERATIONAL
o RESEARCH
ELSEVIE European Journal of Operational Research 169 (2006) 1176-1184

www.elsevier.com/locat efejor

A numerical study of some modified differential
evolution algorithms

P. Kaelo, M.M. Ali*

School of Computational and Applied Mathematics, Witwatersrand University, Private-Bag-3, Wits-2050, Johannesburg, South
Africa
Received 1 September 2003; accepted 1 August 2004
Auvailable online 17 May 2005

Abstract

Modifications in mutation and localization in acceptance rule are suggested to the differential
evolution algorithm for global optimization. Numerical experiments indicate that the resulting
algorithms are considerably better than the original differential evolution algorithm. Therefore, they
offer a reasonable alternative to many currently available stochastic algorithms, especially for problems
requiring _direct search type_ methods. Numerical study is carried out using a set of 50 test problems
many of which are inspired by practical applications.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Global optimization; Population set based method; Modified differential evolution; Continuous variable

1. Introduction solution by x*, with its comresponding global opti-
mal function value f{x*) or /* for a short hand

The global optimization problem in this paper notation. Differential evolution (DE) [1] 15 a popu-
follows the Torm: lation set based global optimization algorithm (2]

and purely heuristic. All population set based di-
rect search methods use a population set S. The
where x 15 a continuous variable vector with do- initial set

main £ C B, and f(x): 2+—R 15 a continuous

minimize j(x} subject to x € £,

. L S =1x,x ..., Xy
real-valued function. The domain € 15 defined by b,)
specifying upper («') and lower (F) limits of each consists of N random points in €. A contraction
component j. We denote the global optimal process 15 then used to drive these pomts to the

vicinity of the global minimizer. The contraction

process involves replacing bad point(s) in 8 with

"* Corresponding author. better point(s), per iteration. In particular, DE
E-mail address: mali@cam, wits.acza (MM, Ali). attempts to replace all points in 8§ by new points

P Kaelo, MM, Ali | European Joumal of Operational Research (69 (2006) [176-1184 1177

at each iteration. DE, therefore, progresses in an
epoch or era base. During each epoch k. N new
function values are evaluated on N trial points.
Trial points are found wusing mutation and
crossover. For the completeness of this paper a
brief description of the DE algorithm is given
below.

2. A briet description of DE

DE attempts to replace each point in S with a
new better point. Therefore, in each ieration, N
competitions are held to determine the members
of § for the next iteration. The fth (i=1,2,.. .,
N competition 1s held to replace x; in 8. Consider-
mg x; as the target point a trial point y; 15 found
from two points (parents), the point x;, i.e., the tar-
get point and the point ¥, determined by the muta-
tion operation. In its mutation phase DE
randomly selects three distinct points xp. Xp2
and x5, from the current set S. None of these
points should coincide with the current target
point x. The weighted difference of any two points
15 then added to the third point which can be
mathematically described as:

X =20y + Py —) (1)

where F' >0 is a scaling factor, and x,, is known
as the base vector. I the point x; ¢ €2 then the
mutation operation 1s repeated. The trial point y;
is found from its parents x; and ¥; using the follow-
g crossover rule:

. {vﬂ if R < Cq oor j=1,
V= o (2)
x; R = Cgand j#I,

where [; 15 a randomly chosen integer in the set /,
le.. Ly I=11,2,...,n}; the superscript j repre-
sents the jth component of respective vectors;
R (0,1), drawn uniformly for each j. The ulti-
mate aim of the crossover rule (2) 15 to obtain
the trial vector y; with components coming from
the components of target vector x; and mutated
vector ¥;. And this 1s ensured by mtroducing Cg
and the set /. Notice that for Cp = 1 the trnal vec-
tor y; 18 the replica of the mutated vector x;. The
effect of Cg has been studied in [2,3] and it was

found that Cgr = 0.515 a good choice. The target-
ing process continues until all members of § are
considered. After all N trial points y; have been
generated, acceptance is applied. In the acceptance
phase the function value at the trial point, f{y;), 15
compared to flx;), the value at the target point. If

fivi) < flxg) then y; replaces x; in S, otherwise, S re-

tains the original x; Reproduction (mutation and
crossover) and acceptance continues until some
stopping conditions are met.

An important 1ssue that needs to be addressed 1s
the value of the scaling factor Fin (1). To the best
of our knowledge, no optimal choice of the scaling
factor F has been suggested in the literature of DE.
For instance, in [4] Fis a value in [0.4,0.8], 1n [5]a
parameter dependent an-isotropic value and n [6]
dynamucally calculated values are suggested. All of
these are derived empirically, and in most cases
choice of F varies from 0.4 to 1. However, In on-
ginal DE [1] Fwas chosen to lie in [0, 2] [t appears
that there 15 no coherent and systenuc study using
a large set of problems in seeking the optimal
choice of F and the suggested values of the scaling
factor have been largely dependent on small test
problem sets used. In this paper, we introduce F
as a uniform random wvariable in [-1.-04]U
(0.4, 1]. Instead of keeping F constant throughout
the course of the DE algorithm, we make F ran-
dom for each trial point.

The main difficulty with the DE technique,
however, appears to lie in the slowing down of
convergence as the region of global minimum is
approached and we have attempted to remedy this
defect by incorporating two new ideas into the
algorithm. Firstly, we use the tournament selection
to obtain the base vector in the mutation rule (1).
The process of randomly selecting three vectors
and obtaining the best within these three is re-
ferred to as the tournament selection. We ran-
domly select three vectors from & and the best
vector, xy,, within these three is used as the base
vector for mutation. This change has a local effect
when the points in S form a cluster around the glo-
bal minimizer. Our first modification, therefore, 15
based on the base vector in the mutation. Sec-
ondly, after calculating each trial point ¥
(i=1,2,...,N) using the mutation (1) and cross-
over (2) of DE, the regions around the trial vector

1178 P. Kaelo, M.M. Ali | Ewropean Journal of Operational Research 169 (2006) 1176-1184

vy and the best vector, xp,, In S are then explored
using some reflection and contraction process.
These modifications result in two new versions of
DE which will be described in the next section.
Section 4 ates the source of 50 test problems used
for the numencal study and also presents numeri-
cal results. Finally, Section 5 contains the conclud-
ing remarks.

3. Muodified differential evolution algorithms

In this section, we propose two new versions of
DE. The first version modifies the mutation rule. It
randomly selects three points in § and explores the
region around the tournament best xy for each
mutated point. It also mmplements the variable
F,. This random localization feature gradually
transforms itself into the search intensification fea-
ture for rapid convergence when the points in §
form a cluster around the global mimmizer. This
version of DE 1s referred to as the differential evo-
lution algorithm with random localization
(DERL). The second new version extends the ori-
ginal DE by a single step in that for each trial
point ¥, generated by DE using (1) and (2), the
new algorithm explores the regions in and around
v and xp, the current best vector in S, using some
contraction and reflection rule before the accep-
tance rule can be applied. This feature of localiza-
tion of searches around the best vector has a
global exploration effect at the early stages when
the points in § are scattered and a local effect in
terms of rapid convergence at the later stages. This
version of DE 15 referred to as the differential evo-
lution algorithm with localization using the best

vector (DELB).

3.1, DERL, a new differential evolurion
algorithm with random localizations

In the original DE three vectors are chosen at
random for mutation and the base vector 15 then
chosen at random within the three. This has an
exploratory effect but 1t slows down the conver-
gence of DE. Also the origmal DE uses a fixed po-
sitive value for the scaling parameter F in
mutation. This has an effect of restricting the

exploration. Our first modification to DE 1s to re-
place the random base vector xy;; In the mutation
rule (1) with the tournament best x,,. From the
three random vectors the best 1s used as the base
vector and the remaiming two are used to find
the differential vector i (1). This process explores
the region around each x, for each mutated point.
This maintains the exploratory feature and at the
same time expedites the convergence. Also, instead
of using a fixed F throughout a run of DE, we use
a random F in [—1,-04] U [04,1] for each mu-
tated point. This also improves the exploration.
Although these modifications are very simple and
naive, numerical results using 50 test problems
have shown that the effects of these changes are
considerable. We present the new DE algorithm
based on these changes.

Algorithm DERL

Step I: Determine the initial set

where the points x;, i = 1, 2,.. ., N are sam-
pled randomly in £2; evaluate flx) at each x;,
i=1,2,...,N Take N = n, n being the
dimension of the function fix). Setiteration
counter £ = (.

Step 2: Determine best, worst point in 5. Determine
the points Xmax and xmin. I the stopping
condition such as |[fax — finl < € 18 satis-
fied, then stop.

Step 3: Generate points to replace points in § for
the next population (or iteration). For
each x;€ § (i= 1, 2,...,N), determine y,
by the following two operations:

e Mutation:

Xp = xpp + Firlxp — xp3), (3)

where xy;, 15 the toumament best and x5,
and xp(3 are the remaining two out of the
three random wvectors from S and F ¢
[~1,-04]uU[04,1], chosen randomly.
The tournament selection is applied for
each i. IT &; & @ then we select another F.
o Crossover: Calculate the trial vector
comesponding to the target x; from x;
and ¥; using the crossover rule (2).

P. Kaelo, M.M. Ali | European Journal of Operational Research 169 (2006 11761154 1179

Step 4: Acceptance rule to replace points in S
Select each trial vector y; for the & + 1 iter-
ation using the acceptance criterion:
replace x; & § with v, if f{v) < fix,) other-
wise retain x;. Set &, =k+1 and go to
Step 2.

Remarks

1. All the steps in the DERL algonthm are similar
to the DE algorithm, except that the mutation
rule (1) 1s replaced by (3). Unlike DE, the scale
F;1s different for each x,.

. A suggested value for N 1s 10n, where » 1s the
dimension (see [3], for a full discussion on the
choice of N).

3. The points xpay and xpi, and their function val-

ues foaxs fmin are such that

(=]

Jmax =max f(x) and o =min f(x).

4. The mutated pomt x; generated by (3) 15 not
necessanly local to xy,. It 15 only local when
the size of the differential vector Fix,p) — xp3)
1s small which 1s less likely when the points in S
are scattered around the search space and
more likely when the points form a cluster
around the vicinity of a minimizer. Therefore,
at the early stage the search will be exploratory
and at the later stage 1t 15 localized.

3.2. DELB, a new differential evolurion algorithm
with localizations around the best vector

The use of xyg in the mutation rule (3) of DERL
1s a salient feature whereby it explores the region 2
when N points are sparse and expedite its conver-
gence as soon as they form a dense cluster. This
random localization 1s used in mutation prior to
the calculation of y,. While this localization n
DERL has a role to play in producing successful
trial points y;, in certain situations it may be pref-
erable to adopt a localization after the trial point y;
has been calculated. When the tnal points y; are
favourable we explore the regions around them
further. This tends to speed up the convergence.
Consequently, we have devised an algorithm that

explores the regions around v; and the current best
Xy in 8. In particular, each time a trial point y; is
found by DE which 1s better than x; but worse
than xy,, two new points, r; and ¢, are found, with
some probability, using the following rules:

F=xp— (3 —xn) (4)
and
ci=xp + 050y — x). (5)

We also implemented the following scheme for cal-
culating r; and ¢, where the points r; and ¢; are

again obtained from x, = (x},x%,...,x7) and
w =7, ..., ") using

ri =yl + (1 -o)x, (6)
and

cd=alx+(1-a'p, j=12,...,n, (7)

where o are uniform random numbers in [—1,1]
for each j. The best of the function values fiy;)
and fir;) or fle;) 18 then compared with f{x;) dunng
the acceptance rule. Egs. (4) and (5) are special
cases of Egs. (6) and (7) respectively. For
#/ =1 Eq. (6) reduces to (4), and for # =0.5
(7) reduces to (5). If the second scheme 15 used
for obtaining r; and ¢, Eqg. (4) in sub Step 4b
and Eq. (5) in sub Step 4c¢ are replaced respectively
by (6) and (7). This modification results in the fol-
lowing algorithm.

Algorithm DELB

Step I Determine the initial set S: same as for
DERL or DE.

Srep 2: Determine best, worst point in 5 same as
for DERL or DE.

Step 3 Generate points to replace points in S for
the next population. For each x; €8
(i=1,2,....N), determine y; by the fol-
lowing two operations:

s Mutation:

X =Xpy + F x{-"p[z;u —-‘fp[a;u]-. (8)

where X1y, X,2) and x5, are random vec-

tors from S and F; € [—1,-04] U [0.4,1].

o Crossover: same as for DERL or DE,
l.e., using (2).

1180 FP. Kaelo, MM, Ali { Evropean Journal of Operational Research 169 [2006) 1i76-1184

Step 4: Localization and acceptance rule to replace
points in 8. Fori=1,2,..., N, do the fol-
lowing steps.

Step da: 1T fly) = fix,) then retain x,
otherwise if R <w and fly) >
fla) then go to Step 4b else go
to Step 4d.

Step 4b: Reflection: Find r; using (4) and
calculate fir;). If flry) < flvy) then
replace x; by r; and go to Step
4a for the next index. Otherwise
o to Step 4c.

Step 4e; Contraction: Find ¢; using (5) and
calculate fie;). If fle;) < flvy) then
replace x; by ¢; and go to Step 4a
for the next index. Otherwise go
to Step 4d.

Step 4d: Replace x; by v, and go to Step
4a for the next index.

Step 5: Set k =k + 1 and go to Step 2.

Remarks

1. All the steps in the DELB algorithm are sirmlar
to the DE algorithm, except the variable F; in
mutation rule (8), and the extended form of
the Step 4, in particular the sub-steps 4b and
4¢ in Step 4.

2. R'inStep4aisa random number in (0, 1), and w is
a user provided value within (0, 1). wcontrols the
frequency of local exploration around v; and .

3. Unlike DE and DERL, where the trial point y;
competes with the target x;, for DELB the tral
point v; and either r; or ¢; compete with the tar-
get x;.

4. If the mutation or the localization procedure
used by (6) and (7) finds a point outside of £
that process is repeated in order to obtain a
point inside the search region. In case of reflec-
tion (4) going outside of € then the contraction
(5) 15 camied out.

4. Numerical results
Performance of the new algorithms described

thus far was judged using a collection of 50 test
problems. These problems range from 2 to 20 in

dimension and have a variety of inherent difficulty.
All the problems have continuous variables. A de-
tailed description of each test problem (F) in the
collection can be found 1 [7].

In this section we compare the DERL and
DELB with the orginal DE algorithm. The algo-
rithms were run 100 times on each of the test
problems to determine the percentages of success
(ps). There were 5000 runs in total. We calculated
the average number of function evaluations (fe)
and average cpu time (cpu) for those runs for
which the global minima were found. The ps, fe
and cpu were taken as criteria for comparison.
We note that except for the 9 dimensional Price
(PTM) and 10 dimensional Odd Square (OSP),
Salomon (SAL) and Shekel Foxhole (FX) func-
tions [7], all algorithms have positive success rate
on the remaining 46 problems. Therefore, the
results for these problems are not reflected in
averages. We also note that accuracy of DE on 9
dimensional Storn function (8T) [7] 1s much less
than the accuracies obtained by DERL and DELB
[3] However, the results for 8T are reflected in all
averages.

The optimal parameter values for all algorithms
were found empirically using 50 test problems. We
do not claim these values to be the optimal for any
problem in general but they will be good values to
choose. The parameters of DE are the scaling
parameter F in its mutation rule (1) and control-
ling parameter Cg In its crossover (2). We have
conducted a series of runs of DE using values (F
varving from 0.3 to 1.25 Cp from 0.25 to 0.9)
for each of these parameters. The best results ob-
tamed using 50 problems were for F=10.5 and
Cr=0.5. We will present the best results here,
although the full set of results for all runs can be
found in [3] It was found that a good choice for
Cg 15 0.5 for all algorithms (see, [3]). The value
of e in the stopping rule |fpe — fminl = € was cho-
sen to be 107 for all algorithms: DE, DERL and
DELB.

To motivate our first modification, DERL, we
present the results showing the effect of xy, and
F; separately. The combined effect of these two
changes results in DERL. Therefore, we compare
the results obtained by original DE(F= (0.5,
Cr = 0.5) with those obtained by DE'(F, random,

P Kaelo, MM, Al Evropean Joumal of Operavional Research 169 (2006) {1 7611584 1181

Table 1
Effect of random F, and xy, in DE
DE DE' DE?
fe cpu ps fe cpu ps fe cpu ps
tr 2,131,089 73.85 4298 2,113,963 7284 4474 1,345,425 39.20 4319
pf 46,328 1.61 93.43 459356 97.26 29.248 0.85 9389

Cr=0.5) and DEJF = 0.5, Cr = 0.5, xp in (1)).
Parameter values are given in parenthesis. DE' is
the original DE algorithm with F; random in
mutation, and DE? is the original DE algorithm
with xy, as the base vector. Results of these algo-
nthms are presented in Table 1. For the compact-
ness of presentation, we have totalled all averages
fe and cpu, and ps for all problems. In Table 1, tr
represents the total result and rpf the result per
function. We calculated rpf by dividing the total
result by 46. It 1s clear from Table 1 that the incor-
poration of F; enhances the robustness of DE con-
siderably. In particular, in terms of ps DE' is
superior to DE by 176 successes, although it 15
slightly inferior to DE in terms of fe and cpu
However, the incorporation of xy, in (1) makes
DE much more supenor in all respects. For in-
stance, DE? is superior to DE by 35% and 45%
respectively m terms of fe and cpu, while achieving
21 more successes in ps than DE. The results of
DERL will be presented along with the results of
DELB shortly.

Unlike DERL, DELB does not use the xy, as
the base vector in the mutation rule (8), rather it
uses random x,qy as in the case of DE. This will
also be justified later, but first we study the effect
of the parameter w which controls the frequency
of localization around x,. As in the previous case,
we study the effect of localization in DE using the
best vector instead. We obtained about the similar
results for DELB using both localization schemes
given by (4)—7). These results are fully reported

and discussed in [3]. However, the results of DELB
presented in this paper were obtained by imple-
menting (4) and (5). We compare the results of on-
ginal DE(F= 0.5 Cgr=0.5 with those of
DE*F = 0.5, Cr = 0.5, localization using (4) and
(5) after each ;). Clearly, for w = 0 DE* becomes
original DE. We present this comparison in Table
2 to see the effect of w. Again we use tr and rpf for
various values of w. From Table 2, it 15 clear that
fe decreases with the increase of w. This trend is
not true for ps. Overall best results were obtained
when w =0.1. For the values after this value ps
worsens rapidly and for values before this both
fe and ps worsen. Therefore, we implemented
DELB with w = 0.1. Notice that DELB 1s different
from DE?® in that it implements random F; in (1).
To see the improved results obtained by the new
algorithms on each problem we present results
on each problem for DE, DERL and DELB in
Table 3. From the total results in the last row in
Table 3, it 1s clear that both implementations of
our new algorithm perform much superior to DE
m terms of fe, ps and cpu. For example, DERL
is superior to DE by 30% and 41% in terms of fe
and cpu, and DELB by 15% and 28%. Although
DERL 1s the best algorithm in terms of fe and
cpu, in terms of ps it 15 runner up. In total ps
DELB 15 superior to DERL by 113 successes and
superior to DE by 147. Moreover, it 1s also clear
from this table that the total results are dominated
by the results of four difficult problems, namely
EM., ML, RB and ST. The total results on these

Table 2
Effect of w in DE
DE — DEM =8 DEM = 805 DE3w = a1 DE =025 DEM = .40
fe ps fe s fe ps fe ps fe s
tr 2,131,089 4298 1.777,536 4430 1.597.841 4456 1,275,127 4408 1,127,897 4341
pf 46,328 93.43 38,642 96.30 34736 96.86 27,720 95.82 24,433 94.36

1182

P. Kaelo, MM, Ali | European Journal of Operational Research 169 (2006) 11761184

Table 3
Comparison of DE, DERL and DELB using 50 problems
P [DE DERL DELB

fe ps cpu fe ps cpu fe ps cpu
ACK 10 25,810 100 0.56 21,583 100 0.43 20,395 100 0.45
AP 2 683 100 0.006 367 100 0.005 700 100 0.007
BL 2 991 100 0.m 762 100 0.007 1004 100 0.m
B1 2 977 100 0.009 815 100 0. 995 100 0.m
B2 2 1039 100 0.009 869 100 0.008 1061 100 0.m
BR 2 1030 100 0.m 172 100 0.007 1047 100 0.m
CB3 2 n7 100 0.006 390 100 0.005 730 100 0.007
CB6 2 976 100 0.009 746 100 0.008 965 100 0.01
M 4 2300 100 0.03 1948 100 0.02 2203 100 0.03
DA 2 1277 100 0.01 1021 100 0.0 1268 100 0.01
EP 2 650 95 0.006 542 99 0.003 629 96 0.006
EM 10 249,958 85 10.35 182,696 56 7.63 248,500 87 10.18
EXP 10 9903 100 0.20 8281 100 0.16 TR60 100 0.16
Gp 2 937 100 0.008 763 100 0.007 948 100 0.m
GW 10 14,705 100 0.32 12271 100 023 11,841 100 0.27
GRP 3 3024 98 0.25 2261 100 0.19 2858 100 0.24
H3 3 1220 100 0.m 988 100 0. 1209 100 0.m
Hé& [3 6836 99 0.12 4980 99 0.10 BORG 98 0.13
HV 3 3782 99 0.04 2942 100 0.03 3634 100 0.04
HSK 2 559 100 0.005 467 100 0,004 579 100 0.006
KL 4 1839 100 0.02 1546 100 0.02 1691 100 0.02
LMI 3 1465 100 0.02 1240 100 0.01 1457 100 0.02
LM2 10 11,583 100 0.25 93531 100 022 9222 100 0.21
MC 2 639 100 0.005 331 100 0.006 639 100 0.007
MR 3 3270 74 0.03 2538 17 0.03 3202 80 0.04
MCP 4 3672 100 0.04 2136 100 0.03 2400 100 0.03
ML 10 200,673 0 4.95 89,629 56 2,22 173,153 71 432
MRP 2 1485 [0.01 1038 63 0.0 1449 63 0.01
MGP 2 1032 68 0.01 75 63 0.0 1070 0 0.01
NF2 4 80,475 100 0.93 42282 100 0.56 04,189 100 124
NF3 10 84,620 100 1.67 61,310 100 130 79,602 100 1.65
osp 10 0 0 0 0 0 0 0 0 0
re 10 14,785 100 0.33 11,654 100 0.29 12,107 100 0.28
PRD 2 1862 90 0.02 1239 82 0.02 1216 98 0.01
PO 4 3346 1040 0.06 4290 100 0.05 5048 1040 0.06
PT™ 9 0 1] 0 0 0 1] 0 1] 0
RG 10 98,303 100 2,05 95,991 100 213 114,138 100 2,50
RB 10 263,700 2 18.22 176,113 100 370 192,676 98 395
SAL 10 0 1] 0 0 0 1] 0 1] 0
SF1 2 3079 63 0.04 3173 41 0.03 3633 85 0.03
SF2 2 1990 100 0.02 1627 100 0. 2025 100 0.02
SBT 2 2581 100 0.03 1939 100 0.02 274 100 0.03
SWF 10 28,157 1040 0.99 21,862 100 0.91 24,792 1040 1.04
S5 4 3734 95 0.07 3914 93 0.03 3097 99 0.07
s7 4 4707 100 0.05 3497 100 0.05 4136 100 0.06
S10 4 4788 100 0.06 3599 100 0.05 4343 100 0.06
FX 10 0 1] 0 0 0 1] 0 1] 0
SIN 20 61,242 100 299 48,610 100 233 34919 100 1.58
ST 9 000,090 1040 2884 646,380 100 21.00 T00, 402 1040 2347
wP 4 14,598 96 0.16 10,389 100 0.13 12,222 100 0.16
tr 2,131,089 4298 73.85 1,492,717 4332 4408 1,802,733 4445 52.59

P. Kaelo, MM. Ali | Ewropean Joumnal of Operational Research 169 (2006) 11 76-1184

problems show the superiorities of the new algo-
nthms over DE even more. In particular, the total
ps on these problems obtained respectively by DE,
DERL and DELB are 257, 312 and 356. We [ur-
ther compare the algonthms excluding these prob-
lems. The total (fe, ps. cpu) obtained respectively
by DE, DERL and DELB are (514,668, 4041,
11.53), (397,899, 4020, 9.61) and (487,993, 4089,
10.63). Clearly, DERL obtained about the same
level of ps as DE but it obtained much lower fe
and cpu. On the other hand, DELB achieved supe-
nority over DE in terms of fe and ps. In particular
DELB has obtained much more ps than DE while
their cpu are about the same level. It is therefore,
clear that for the four difficult problems the new
algorithms are much superior to DE in all respects.
For the remaining 42 less difficult problems the
superiorities of the new algorithms over DE still
hold. One can notice that DERL reduces the fe
and cpu while DELB increases ps considerably.
We next combine these complementary strengths
to see their combined effect by simply replacing
the random x,,, with Xy in mutation rule (8) in
DELB. As before, using parenthesis we can write
this as DE‘{[",- random, Cgr = 0.5, xg in (8), local-
ization around x,). DE* therefore, uses both
localizations, ie., random localization using the
tournament best and the localization around the
best vector.

4.1. Effect of global and local techniques

The essential differences between DE and
DERL are that DERL uses variable F;, whereas
DE uses fixed £, and that DERL uses the tourna-
ment best point xy, while DE uses a random point
as the base vector in their respective mutation rule.
On the other hand, DELB differs from DE in that it
uses random F;and that foreach trial point y;it ex-
plores the vicinity of the best point x, with some
probability. If we fix F; and let the probability w

1183

be zero then DE and DELB are the same. To show
that the proposed modifications to the DE algo-
rithm prevails in their superionty over the onginal,
we have carred out a comprehensive numerical
studv. The results, which were found to be very
encouraging are reported m full in [3] where we
have also considered the accuracy of the global
minimum as one of the indicators. However, we
would like to summarise the results in a compact
format that will also be clearly understandable. In
order to facilitate the understanding and to make
the difference between the methods more explicit
we append to each individual algorithm name the
appropriate parameter containing “(global or local
effect, local effect, parameter F). If an algonthm
does (does not) use xy as the base vector, we say
it has a local (global) effect. The global and local ef-
fects are complementary to each other with respect
to the parameter in the first component. However,
since the local technique in DELB is not related to
the base vector in the mutation rule, it s reflected in
the second component. DE and DERL do not have
local effect in the second component. We denote
the global and local effect respectively by g and /,
and the parameter F by f or v depending upon
whether it 1s fixed or variable. Using these notation
we thus write DE, DERL and DELB as DE®",
DE%* and DE%"") We can also write DE!,
DEZ DE® and DE? respectively as DE®", DEY 1,
DE* and DE“". We also include DE" (0 see
the effect of the fixed scaling factor Fand xy, as the
base vector in DELB. We compare these algo-
rithms in Table 4 using total results to see the effects
of the parameters such as the base vector, localiza-
tion around xp and F. It can be seen from Table 4
that the dominant factor in reducing the fe has been
the random localization, i.e., the use of [in the first
component of the parameters of the algorithms.
This is true for both the new algorithms. One
can see this by comparing the fe under DERL =
DE“*” and DE%*”, and DELB = DE®*” and

Table 4
Effect of local and global techniques

DEE DE& DEE~ DEY DE®: DEES DED DE®LY
fe 2,131,089 1492717 1,802,733 1,345425 2,113,963 1,597,841 1,139,903 1,050,976
ps 4298 4332 4445 4319 4474 4456 4359 4325

1184 FP. Kaelo, MM, Ali | Evropean Journal of Operational Research 169 [2006) 1176-1154

DE"" The same is true for other implementa-
tions, e.g., for DE*Y and DE*. On the other
hand, fixing the scaling factor Fin the last compo-
nent has an effect of reducing the success rate ps.
This is clear if we compare the ps under DE =
DE*® and DE*™ and the ps under DE"
and DE"). By comparing the results under the
last three columns we see that the implementation
of both local techniques has a negative effect on
ps. The choice of parameter values 1s flexible, and
it 15 upto the users to decide which combination
of parameter values to choose. Thismay differ from
user to user depending on whether they want more
ps or less fe, or both.

5. Conclusion

We introduced two new algorithms and tested
them on 50 benchmark test problems with a max-
imum dimension of 20. From the comparison in
the previous section it 1s quite clear that the new
algorithms are superior to the onginal DE. We
have made every effort to make the comparison
as fair as possible despite the differences in the
accuracy of the global minimum obtained by dif-
ferent algorithms. If we had used the accuracy of
the solution found as a criterion for comparison,
the new algorithms would have been much more
superior [3]. The new algorithms could also be
preferable because they are simple and easily pro-
grammable. There are clearly circumstances n
which an easilv implementable, direct search, glo-
bal optimization algorithm will have an important
role. Consequently, we feel that the introduction
of our two new algonthms, with their substantial
improvement over the ornginal DE algorithm, 1s

justified. Therefore, using these direct search meth-
ods, which have shown to be robust and efficient,
could be rewarding.

A disturbing fact concerning DE algorithms 1s
their totally heuristic nature with no theoretical
convergence properties. Further research 1s under-
way In developing convergence properties and in
developing an efficient hybnd DE global optimiza-
tion method for large dimensional problems.

References

(1] R. Storn, K. Price, Differential evolution—A simple and
efficient heuristic for global optimization over continuous
spaces. Journal of Global Optimization 11 (1997) 341-
359,

[2] M.M. Ali, A. Tdrn, Population set based global optimiza-
tion algorithms: Some modifications and numerical studies,
Computers and Operations Research 31 (10) (2004) 1703
1725,

(3] P. Kaelo, Some population set based methods for uncon-
strained global optimization, PhD thesis, in preparation.
(4] K. Price, An introduction to differential evolution, i D.
Corne, M. Dorigo, F. Glover (Eds.), New Ideas in Optimi-

zation, McGraw-Hill, London, 1999, pp. 79-108.

(5] D. Zaharie, Critical values for the control parameters of
differential evolution algorithms, in: R. Matousek, P.
Osmera (Eds.), Procesdings of MENDEL 2002, 8th Inter-
national Mendel Conference on Soft Computing, Bruno,
Czech Republic, Bruno University of Technology, Faculty
of Mechanical Engineering, Bruno, Czech Republic, 2002,
pp. 6267,

(6] MM. Ali, A. Tom, Topographical differential evolution
using pre-calculated differentials, in: G. Dzemyda, V.
Saltenis, A. Zilinskas (Eds.), Stochastic and Global Opti-
mization, Kluwer Academic Publisher, London, 2002, pp.
1-17.

[7] M.M. Ali, C. Khompatraporn, Z.B. Zabinsky, A numerical
evaluation of several stochastic alporithms on selected
continuous global optimization test problems, Journal of
Global Optimization, in press.

