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Abstract

The Segwagwa Group of southeastern Botswana, a correlate of the Pretoria Group of the Transvaal Supergroup of South Africa,
consists of a major sequence of siliciclastic sedimentary rocks, minor carbonates and basaltic to andesitic lavas and tuffs straddling
the Western and Central Domains of the Kaapvaal Craton. The Segwagwa Group unconformably overlies the Taupone Dolomite
Group, a correlative of the South African Chuniespoort/Ghaap Groups of the Transvaal Supergroup. SHRIMP U-Pb analyses of
123 detrital zircons from the top, middle and bottom of the Segwagwa Group sedimentary rocks include 96 concordant to near-
concordant zircons defining three main age groups: >3.0-2.9 Ga (n=12), 2.8-2.5 Ga (n=27) and 2.45-2.20 Ga (n=57). The
=2.90 Ga zircons were sourced from granitoids emplaced before and around 2915+12 Ma and are related to the amalgamation of
the Westem, Northern and Central Domains of the Kaapvaal Craton. Concordant zircons with a mean age of 2781 £8 Ma originate
from the Gaborone Igneous Complex. The detrital zircons in the range 2.7-2.5 Ga were likely sourced from the Kalahari
continental fragment made up of the Kaapvaal Craton, Limpopo Belt and the Zimbabwe Craton, specifically from the Limpopo
Belt and/or the Zimbabwe Craton where igneous rocks in this age range are widespread. The igneous sources for the
Palaeoproterozoic (ca. 2.45—-2.20 Ga) zircons are difficult to identify since igneous rocks in that age are not widely known or
documented by reliable dates in the Kalahari Craton.

The youngest zircons of ca. 2.2 Ga occur in all the sandstones and form the main group (>90%) in the sample from the top of
the Segwagwa Group. The youngest detrital zircon of 2193+20 Ma sets the maximum time of deposition of the Segwagwa Group.
Published data suggest that the minimum deposition age of Chuniespoort/Ghaap Group sedimentary rocks is 2431+31 Ma [D.R.
Nelson, Compilation of SHRIMP U-Pb zircon Geochronological Data, 1996 Record 1997/2, pp. 189, Western Australia Geological
Survey, 1997.]. Therefore, the unconformity between the Lower and Upper Transvaal represents a ~200 Ma hiatus, and the
lithostratigraphic units on the two sides of the unconformity should not be grouped in the same supergroup. Detrital zircon ages
suggest that the time of deposition of the Segwagwa/Pretoria Group which mnges from ca. 2.40 to 2.20 Ga is coeval with the
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Palaeoproterozoic global glacial deposits in North America, Australia and Fennoscandia; and with sedimentary rocks from the
Palaeoproterozoic Magondi Belt. Therefore, the Segwagwa/Pretoria Group and the Magondi di ¥ succession were
deposited during the first global glacial period, are possibly related to the same geodynamic cycle, and should be part of the same

supergroup.
©@ 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The transition between the Archaean and the
Palaeoproterozoic is formally located at 2.5 Ga by the
Commussion of Stratigraphy of the International Union
of Geological Sciences (IUGS). However, the exact
timing of the oldest Palaeoproterozoic sedimentary
rocks resting on the Archaean cratons is still poorly
constrained around the world, possibly because this
period was not a prolific magmatic period in various
cratons. This could be biased by the limited amount of
reliable geochronological data available on the African
continent, as there are only few igneous rocks yielding
precise crystallisation ages between ~2.4 and 2.1 Ga in
most African cratons and orogenic belts [2]. Hanson [3]
in a paper on the Proterozoic geochronology and tec-
tonic evolution of Africa does not show any record of
igneous activity at ca. 2.4-2.2 Ga on the African con-
tinent. Similarly, Eglington and Armstrong [4] show that
in the Kaapvaal Craton there are few geochronological
dates indicating magmatic activity at ca. 2.4-2.3 Ga,
however cratons in India, North America, Baltic Shield
and Antarctica are characterized by the emplacement of
flood basalts, dyke swarms and ultramafic-mafic lay-
ered complexes near the Archaean-Proterozoic bound-
ary [5,6]. The Archaean Kaapvaal Craton in southemn
Africa is covered by a thick sedimentary succession —
the Transvaal Supergroup — known to straddle the
Archaean-Proterozoic boundary. The Transvaal Super-
group is mainly a metasedimentary succession (quartz-
ite, carbonate and iron formation), with minor mafic
volcanics, which is found in three separate basins on the
Kaapvaal Craton. It is subdivided into the Lower
Neoarchaean ChuniespoortTaupone/Ghaap and Upper
Palaeoproterozoic Pretoria/Segwagwa/Postmasburg
groups [7,8]. The Neoarchaean Lower Transvaal
sequence is separated from the Palaeoproterozoic
Upper Transvaal sequence by an unconformity and
contains important rock formations that include carbon-
ate and banded iron formation, basal and intraforma-
tional low latitude glacigenic deposits and red beds
[9,10]. Thus, this sedimentary succession offers a
unique opportunity to document the critical transition
between the Archaean and the Palaeoproterozoic, to

constrain the time which separated the deposition of the
last Archaean and the earliest Proterozoic geological
unit; and to constrain the time of Palaeoproterozoic
glaciation and oxygenation.

The Sensitive High Resolution Ion Microprobe
(SHRIMP) U-Pb detrital zircon geochronology offers a
powerful tool for unravelling the maximum depositional
ages of sediments whereas crosscutting igneous bodies
provide the minimum age of the accumulation of
sediments in basins. The youngest concordant detrital
zircons define the maximum deposition age of the analysed
sedimentary rocks whereas the overall population of the
detrital zircons represents the age spectrum of zircon-
bearing rocks in the source area ofthe sedimentary detritus.
Furthermore, the size, shape and general morphology of
detrital zircons provide clues on the dynamics of the
transporting media and transport distances.

Important questions relating to the evolution of the
Transvaal Supergroup include: (a) what is the length of
time represented by the hiatus/unconformity between
the Neoarchaean Lower Transvaal known as the
Taupone Dolomite Group in Botswana and the Palaeo-
proterozoic Upper Transvaal known as the Segwagwa
Group in Botswana? (b) What is the source of sedi-
ments? (c) What was the geotectonic setting during the
deposition of the Upper Transvaal (Pretoria/Postmas-
burg Groups in South Africa and Segwagwa Group in
Botswana) rocks of southern Africa?

In this study we use SHRIMP U-Pb zircon data to
shed light on: (1) The maximum depositional age of
clastic sedimentary rocks of the Segwagwa/Pretoria
Group; (2) The source of sediments using the age of
detrital zircons along with previously published sedi-
mentological data; (3) The implications of the data on
the formation of Segwagwa/Pretoria Group in the broad
Palaeoproterozoic evolution of southern Africa and; (4)
The implications of the data on the first global glaciation
during the Palaeoproterozoic time.

2. Geological background
The Transvaal Supergroup (Fig. 1, Table 1) forms one

ofthe major Archaean to Palacoproterozoic basins hosting
low-grade metasedimentary and metavolcanic rocks within
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Fig. 1. Geological map of southen Africa and location of the Transvaal Supergroup.

the Kaapvaal Craton in South Africa and Boiswana
[11-15]. The Lower Transvaal includes the Neoarchaean
Chuniespoort/Ghaap Group in South Africa and its
correlative Taupone Dolomite Group in Botswana. The
Upper Transvaal consists of the Palaeoproterozoic Pretoria/
Postmasburg Group in South Africa and its correlative
Segwagwa Group in Botswana. The Taupone/Chunie-
spoort Group is a carbonate sequence capped by iron
formations and ironstones whereas the Segwagwa/Pretoria
Group is siliciclastic with minor voleanic rocks [16,17].
In Botswana, the base of the Taupone Group is a red,
matrix-supported conglomerate unconformably overlying
siltstones and laminated shales of the Lobatse Volcanic
Group [12,16,18,19]. This conglomerate forms extensive

ridges and marks the base of the Black Reef Quartzite
Fomation. It consists of sub-rounded and angular clasts of
rhyolite and vein guartz supported by a sandy matrix
cemented by iron rich material. The poorly consolidated
conglomerate is overlain by mature quartzite and then by a
sequence of chert-rich and chert-poor dolomites. The
cherty dolomites contain massive chert beds that are
locally stromatolitic, with interbedded chert and dolomite
grading to iron-formation(s) of the Masoke Iron Formation
and chert breccias of the Kgwakgwe Chert Breccia
Fomnation at the top [16.20]. The chemical sedimentary
succession of the Taupone/Chuniespoort Group is sepa-
rated from the clastic sedimentary rocks of the Segwagwa/
Pretoria Group by an erosional unconformity. The
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unconformity rocks comprise a conglomerate with pebbles
of chert (in a ferruginous matrix) known as the Bevets
conglomerate Member which has alsobeen interpreted asa
glacial sedimentary unit [15,19,21,22].

The Segwagwa Group sedimentary rocks are exposed
in the Jwaneng, Kanye, Lobatse and Ramotswa areas (Fig.
2), and within the Grigualand West Basin extension in
Botswana. This basin is separated from the main Transvaal
Basin (South Africa) by a basement ridge including the
Gaborone Igneous Complex [11,13,15]. These basins
evolved separately [18,22-25], although the Hekpoort-
Ditlhojana- Tsatsu-Ongeluk volcanic units provide a
prominent marker horizon at the same stratigraphic
position in both basins. In the Kanye area [13,20,26,27],
the Segwagwa Group comprises seven formations (Table
1) exposed within a syncline around Segwagwa village
and within a syncline-anticline pair southwest of Jwaneng
(Fig. 2). The Segwagwa Group comprises quartzites,
ferruginous sandstones, shales and a volcanic unit
(basaltic to andesitic lavas and amygdaloidal basalt)

117

known as the Tsatsu Formation. This formation is a
correlate of the Hekpoort and Ongeluk Formations in the
Pretoria/Postmasburg Groups of South Africa, respective-
ly [16,17,28]. The base of the Segwagwa Group is made
up of black pyritic shales, overlain by ferruginous
quartzites, iron rich shales and a chert pebble conglom-
erate of the Ditojana and Tlaameng Formations [13.20].
In South Africa, the Pretoria Group is made up of a
lower Pretoria Group comprising nine formations [29]
starting with the Rooihoogte Formation made up of
conglomerates, quartzite, shales and chert pebble/clast
breccia known as the Bevets conglomerate Member; and
an upper Pretoria Group comprising quartzites and shales.
A further five formations are preserved in the east of the
Transvaal Basin [9]. The Rooihoogte Formation overlies
the Duitschland Formation comprising dolomitic shale,
dolomite, quartzte, and chert breccias/diamictite (Bevet's
Conglomerate) above the Banded Iron Formation land-
scape [9]. The Rooihoogte Formation is overlain by the
Timeball Hill Formation, which is made up of lower
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shales, quartzites, conglomerate lenses and diamictites,
and upper shales. Locally, the base of the Timeball Hill
Formation (Table 1) is marked by altered lavas of the
Bushy Band Lava Member [22,24.30,31]. The Timeball
Hill Formation is overlain unconformably by the Boshoek
Formation (conglomerate, sandstone), a cormrelate of the
Makganyane diamictite [9,10,32]. The Boshoek Forma-
tion diamictites are absent in the south of the Transvaal
Basin, are up to 100 minthe east, 0-50 min the centre and
down to 0-10m in the west [9]. The Timeball Hill
Formation is a correlate of the Ditojana Quartzite of the
Segwagwa Group [1520]. The base of the Ditojana
Formation has no voleanic rocks but contains pyritic and
micaceous shales grading to ferruginous quartzites at the
top. The Boshoek Formation is correlative with Tlaameng
Formation in the Kanye Basin and principally made up of
brown to yellow, ferruginous shale with discontinuous
chert pebble conglomerate/diamictite below the Tsatsu
Formation. Borehole intersections in the Jwaneng area
show that the chert pebble conglomerate/diamictite forms
a persistent marker unit with a maximum thickness of
100 cm. This chert pebble conglomerate is interpreted
as a diamictite correlative to the Makganyane diamictite
in the Grigualand West Basin and the Boshoek Formation
in the Transvaal Basin.

The depositional age constraint for the lowermost
Transvaal in the Griqualand Basin of South Africa
is given by a U-Pb zircon crystallization age of
2642+3 Ma for a tuff bed in the Vryburg Formation
[33]. An ID TIMS Pb-Pb date of 2557+49 Ma was
obtained on limestones from the Schmidsdrift Formation
of the Campbell Subgroup by Jahn etal. [34]. This date is
similar to a SHRIMP U-Pb zircon igneous crystalliza-
tion age of 2555+ 19 Ma for tuff beds in the Monteville
Formation in the Campbellrand Subgroup [35]. In the
Transvaal Basin, a tuff in the upper part of the Oak Tree
Formation yielded U-Pb zircon igneous crystallization
ages between 2583 +5 and 2550+3 Ma [1]. The top of
the Chuniespoort Group is marked by the Penge Iron
Formation, which has a SHRIMP U-Pb zircon igneous
crystallization (tuff) age of 24806 Ma [1,36].

Tuff beds below the contact between the Campbell-
rand Subgroup and the Kuruman Iron Formation in the
Grigualand Basin yielded an ID TIMS U-Pb zircon
igneous crystallization age 02521+ 3 Ma [37], which is
similar to the SHRIMP U-Pb zircon age of 2516+4 Ma
for the same unit [35]. The Riries Member, a tuff bed in
the Kuruman Formation, yielded U-Pb zircon crystal-
lization ages of 2478.5£5.7, 24657 and 2460+35 Ma
[38], the last date representing the crystallization age of
felsic lavas coeval with the deposition of the Kuruman
Iron Formation. The volcanic material from the Griqua-

town Iron Formation above the Kuruman Formation
yielded the younger U-~Pb SHRIMP zircon crystalliza-
tion age of 243131 Ma [36], setting the minimum
depositional age of the Lower Transvaal. In the
Moshaneng sub-basin, the Taupone dolomites were in-
truded by Bushveld-age syenites, granites and diorites
of the Moshaneng Complex, which yielded U~Pb zircon
crystallization ages of 20542 Ma [11,39].

The Moshaneng Complex is not in contact with the
Segwagwa Group supracrustal sedimentary rocks. How-
ever, the Segwagwa Group is intruded by and folded
together with the Segwagwa and Masoke igneous
complexes north of the Mmathethe (Fig. 2). These
igneous complexes comprise syenites and diorites similar
to those exposed in the Moshaneng Complex [39] A
granite from the Segwagwa Complex yielded a U-Pb
zircon crystallization age of 2054+9 Ma that supports the
correlation of the Segwagwa-Masoke Complexes to the
Moshaneng Complex [40]. Therefore, the minimum
deposition age of the Segwagwa Group sedimentary
rocks is ~2.05 Ga. Similarly, in South Africa, the ca. 2.05
Ga Bushveld Complex intrudes and sets the minimum
deposition age of the Pretoria Group [7,21.41].

The age and correlation of units described above with
similar units in Botswana are shown in Table 1. The
Vryburg Formation marks the base of the Griqualand
West Supergroup and is the equivalent of the Black Reef
Quartzite Formation in Botswana. The dolomites and
siliceous dolomites of the Taupone Dolomite Group in
Botswana correlate with the Ghaap and Chuniespoort
Groups in South Africa.

The depositional age of the Segwagwa/Pretoria
Group is constrained by an Re/Os age of 2322+16
Ma derived from mudstones from the Rooihoogte and
Timeball Hill Formation, SHRIMP U-Pb detrital
zircons age of 2324+17 Ma from the Timeball Hill
Formation, and whole rock Pb-Pb isochron date of
2236=+38 Ma and whole rock Pb-Pb isochron date of
2222+ 12 Ma for lavas of the Ongeluk Formation of the
Postmasburg Group and lavas of the Hekpoort Forma-
tion in the Transvaal Basin in South Africa [42,43].
However, according to Bau et al. [44], the 223638 Ma
date has never been reproduced nor confirmed by U-Pb
zircon dating. Note that this date is similar to a low-
precision Rb-Sr isochron date of 2224 +21 Ma for the
Hekpoort Formation in the Transvaal Basin [43,44]. Bau
et al. [44] published a Pb-Pb date of 2394+26 Ma for
dolomites from the Mooidrai Formation of the Post-
masburg Group in the Grigualand West Basin. Accord-
ing to these authors, the dates for the Ongeluk Lava and
by extension the Hekpoort andesite below the dated
dolomites were unreliable. Catuneanu and Eriksson [45]
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suggested that the Bushy Bend Lavas above the
uncon formity between the Lower and Upper Transvaal
Groups were possibly emplaced at ca. 2350 Ma, based
on unpublished Pb-Pb zircon evaporation dates of the
Hekpoort andesite lavas (Eriksson, pers. com. 2003).
Moore etal. [46] argued against a correlation between
the Transvaal and Griqualand West Basins, based on the
age of the unconformity separating the Lower Transvaal
(Chuniespoort and Ghaap Groups) from the Upper
Transvaal Supergroup (Pretoria and Postmasburg
Groups). In this new interpretation, the unconformity
which separates the Chuniespoort from the Pretoria
Group appears to affect units correlated with the Pretoria
Group, implying that units which were hitherto corre-
lated with the Pretoria Group were absent in the
Griqualand West Basin. For example, the Omngeluk
Formation lava would be older with no equivalent in
the Transvaal and Kanye Basins. The new interpretation
of Moore et al. [46] is untenable in part because; first it is
based on the age published by Bau et al. [44] on the
Mooidraai dolostones in Griqualand West that is too old
by ca. 70 Ma according to new data [42,43]; second
regional studies confirm the correlation of key units in
the both basins; for example, Tinker et al. [47] show on
deep seismic sections that the Ongeluk and Hekpoort
Formation lavas are laterally continuous; third the main
units that correlate with Pretoria Group sedimentary
rocks exist in the Kanye Basin Botswana which are not
only adjacent to but are physically part of the Griqualand
‘West Basin lithological units [11,15,17,20] consistent
with current regional correlations of sedimentary and
volcanic units in the Transvaal, Kanye and Griqualand
‘West Basins [15,48.49]. However, in some parts of the
Kanye Basin in the Jwaneng area, lithological units that
normally lie between the Masoke Iron Formation (Penge
Iron Formation) and the Ditojana Formation (Timeball
Hill Formation) are missing in borehole intersection;,
consequently the Taupone Dolomite Group is directly
overlain by the post-Timeball Hill Formation rocks
[Mapeo, unpublished data], an indication of complex
erosion and preservation of Postmasburg/Segwagwa
Group rocks in the Kanye and Griqualand West Basins.

3. Analvtical procedure

Three 2--5 kg samples from the Segwagwa Group were
collected at three different stratigraphic positions (bottom,
middle and top) (Table 1). The samples were crushed and
the zircons separated using standard heavy liquid and
Frantz Isodynamic separation techniques. The final
concentrate was handpicked under a binocular microscope
and the zircon grains were mounted in epoxy together with

the zircon standard AS3 (Duluth Complex gabbroic
anorthosite [50]) and the standard SL13 of the Research
School of Earth Sciences, The Australian National
University. The grains were then sectioned approximately
in half, polished and photographed. Cathodoluminescence
imaging on a Scarming Electron Microscope (SEM) was
carried out prior to the dating to aid in the selection of the
best target areas for the analyses. All the zircons were
analyzed on SHRIMP II, and the data have been reduced in
a manner similar to that described by Williams and
Claesson [51] and Compston et al. [52]. U/Pb in the
unknowns were normalized to a ~"“Pb*/™U value of
0.1859 (equivalent to anage of 1099.1 Ma) for AS3. The U
and Th concentrations were determined relative to those
measured in the SL13 standard. Ages were calculated
using the radiogenic **"Pb/*"*Pb ratios, with the correc-
tion for common Pb made using the measured™Pb and the
appropriate common Pb composition, assuming the model
of Cummings and Richards [53]. Uncertainties in the
isotopic ratios and ages in the data table (and in the error
bars in the plotted data) are reported at the one sigma level,
but unless otherwise stated in the text, the final weighted
mean ages are reported as 95% confidence limits, with all
statistical analyses and age calculations done using the
IsoplotEx software of Ludwig [54-56].

4. Results

The grains are mostly sub-rounded and/or cracked,
and are interpreted as detrital grains with no in situ
growth of new metamorphic zircons (Fig. 3). The results
for all the samples dated are reported in Table 2, and
plotted on a Wetherill U-Pb Concordia diagram (Fig.
4a—c) and a cumulative histogram plot (Fig. Sa-—c).

2398 Ma

Fig. 3. Cartholuminescence images of zircons grains from sample
REM4/200]1 showing cracked and sub-rounded grain forms. Grain
numbers and 2°"Pb/*"Pb data and analytical sites are given for various
grains extracted.
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Fig. 4. U-Pb concordia plots of SHRIMP of analysed detrital zircon
fractions from the Segwagwa Group. The Concordia is calibrated in
Ma and only data which are =90% concordant are included in the
analysis: (a) base of the Ditojana Formation (RBM2/2001); (b) top of
the Mogapinyana Formation (RBM4,2001); (c) top of Monotoholwana
formation (RBM 1/2001).

4.1. Sample RBM2/2001

This quartzite sample was collected near the base of
the Segwagwa Group immediately above the banded
wronstones of the Taupone Group, west of Segwagwa
village at 25°11.334'S/25°10.066'E. The quartzite is
pale brown, medium- to coarse-grained, rarely with
cross-beds. It occurs at the bottom of the Ditojana
Formation of the Segwagwa Group, a correlate of the
quartzitic units of the Timeball Hill Formation of the
Pretoria Group, or with some units in the Makganyane
Formation of the Postmasburg Group. Forty-three
analyses were done on 43 different and randomly
selected detntal grains from this sample, of which 35
are =90% concordant (Fig. 4a). All the grains ranged
between 160 and 120 pm. The 35 concordant zircons are
split into four main groups: ca. 2900-2700 Ma (n=25);
ca. 2350-2200 Ma (n=T); ca. 2600-2500 Ma (n=2),
including analyses 8.1 and 9.1 giving 2632£15 and
2542+45 Ma, respectively; and >3000 Ma (n=1)
corresponding to one concordant grain of 3010.6=7.8
Ma (Table 2a). The oldest concordant zircon date of
3260+30 Ma is recorded by a 13% discordant zircon,
which sets the maximum age of the source of'this zircon.
The probability plot for the main detrital zircon
population in this sample gives a mean *"Pb/?"°Pb
with peak at 2781+7 Ma (Fig. 5a). The youngest zircon
in this sample (grain number 18.1) yielded a concordant
207ph /2"Ph date of 2240+ 12 Ma (20) among a group of
four other near concordant analyses (2251+12, 2239
+22,2248+ 13 and 2268+ 10 Ma) which give a weighted
mean ~""Pb/*"*Pb date of 2250+ 14/~ 15 Ma (MSWD=
0.09) for Ditojana Formation of the Segwagwa Group.

4.2. Sample RBM4/2001

This ferruginous quartzite sample was collected from
a nidge close to the top of the Mogapinyana Formation
of the Segwagwa Group at 25°07.696'S/25°06.890E.
The Mogapinyana Formation in Botswana is a correlate
of the Daaspoort Quartzite Formation of the Pretoria
Group. It comprises dark carbonaceous shales overlain
by pink quartzitic sandstones. The sandstones are
overlain by micaceous shales with the top marked by
prominent pink to red coloured sandstones. The red
sandstones are associated with a polymict, red-coloured
or dark brown, poorly sorted conglomerate with
subrounded clasts of chert, red to dark brown sand-
stones, ironstones, jaspilites and vem quartz. Forty
analyses were done on 40 different and randomly
selected detrital grains from sample RBM4/2001. The
majority of the data plot on or near Concordia (Fig. 4b);
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Fig. 5. Histogram and density probability curves of SHRIMP 2*"Pb/*®Ph data for all the samples in the Segwagwa Group. (a) Base of the Ditojana
Formation (RBM2/2001); (b) top of the Mogapinyana Formation (RBM4/2001); (c) top of Monotoholwana formation (RBM1/2001); (d-e)
comparison of the Segwagwa Group sedimentary rocks and Gweta Gneiss using histograms and density probability curves of all SHRIMP **"Ph/
%Pl data. The probability curves are calibrated in Ma.
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a number of zircons are significantly discordant, and
therefore in our statistical assessment of the data, only
the 26 concordant to near concordant (>90%) 207pp/
“°Pb dates are considered. The spread of zircon dates
ranges from ca. 3.0-2.7 Ga (n=3) to ca. 2.45-2.20 Ga
(n=23), reflecting the heterogeneous nature of the
sources of these rocks (Fig. 5b). The largest distinct
group of data falls between ca. 2450-2200 Ma. The
youngest zircon grain (13.1) yielded a concordant
207pp /2% Ph date of 2236 +13 Ma (20) (Table 2b) which
is the preferred estimate for the maximum age of
deposition for the Mogapinyana Formation of the
Segwagwa Group.

4.3. Sample RBM1/2001

This sample from the pink to white cross-bedded
quartzites of the Monotoholwane formation at the top of
the Segwagwa Group was collected at 25°13.694'S/
25°07.735'E and it correlates with the Magaliesberg
Quartzite Formation of the Pretoria Group. This
Formation is principally made up of reddish quartzitic
sandstone with a sugary texture capped by unexposed
shales. Forty grains in sample RBM1/2001 were
analyzed, of which 33 are concordant to slightly
discordant (>90%) (Fig. 4c¢), and the data show a
bimodal distribution of *""Pb/*"°Pb dates (Fig. Sc).
More than 90% (n=24) of the concordant zircons
yielded dates between 2350 and 2190 Ma. The oldest
zircon grain (8.1) is Archaean with a >’ Pb/*"°Pb date
of 267411 Ma (Table 2c¢). The youngest group of
zircons comprises 24 concordant analyses, of which the
youngest zircon grain (21.1) yields a *"Pb/*"Pb date
0f 2193+20 Ma.

5. Discussion
5.1. Timing of sediments deposition

The Segwagwa/Pretoria Group contains a volcanic
marker known as the Hekpoort Formation in the
Transvaal Basin or the Ongeluk Formation in the
Griqualand West Basin in South Africa [14,20,43], and
the Tsatsu or Ditlhojana Formations in the Kanye and
Ramotswa Basins of Botswana, respectively [17,23,57].
The Ongeluk and the Hekpoort Formations in South
Africa yielded Pb-Pb and Rb-Sr whole-rock isochron
dates of 2222+13 and 2224+21 Ma, respectively
[28,57]. In contrast, a carbonate unit stratigraphically
overlying the Ongeluk Formation yielded a low-
precision whole-rock isochron Pb—-Pb date of 2394 £26
Ma [44]. This date was used to suggest that the

Segwagwa/Pretoria Group sedimentary rocks were
deposited between ca. 2.40 and 2.39 Ga [23,45]. New
Re/Os dating of the Timeball Hill Formation indicates
that this formation was deposited at 23167 Ma [42]
whilst SHRIMP U-Pb dating of detrital zircons yielded
an age of 2324+17 Ma being the maximum deposition
age of the this formation [43]; suggesting the age
obtained by Bau et al. [44] was too old. The youngest
detrital zircons from the base (2240+12 Ma), middle
(223613 Ma) and top (2193£20 Ma) of the Seg-
wagwa/Pretoria Group in Botswana are, within the
margin of errors, identical. These dates indicate that the
maximum depositional age of the Segwagwa/Pretoria
Group in Botswana is ~2.25-2.20 Ga and imply that the
dated exposure of the Timeball Hill Formation by
Dorland [43] did not contain any of the younger grains
or altematively the lack of a major component of ca.
2.32 Ga detrital zircons in the Kanye Basins, reflects
changes in the source regions during the deposition this
formation in the Kanye and Transvaal Basins.

The Rb-Sr isochron ages of ca. 2.22 Ga reported for
volcanic rocks inter-bedded with the sedimentary rocks
of the Segwagwa/Pretoria Group reinforce the deposi-
tion of these supracrustal sedimentary units at <2.25 Ga.
The U-Pb zircon dates in this paper rule out the
deposition of the Segwagwa/Pretoria Group at ~2.40
Ga, at least in Botswana. Taking into account the
limitations of the Pb-Pb isochron technique, we believe
the same may apply to the Postmasburg Group of South
Africa where the Pb—~Pb carbonate age of ~2.39 Ga was
obtained. The minimum age of deposition of the
Segwagwa/Pretoria Group is set by the crystallization
age of 2055+5 Ma for the Bushveld Complex in South
Africa [33,58], and coeval intrusive bodies including the
Moshaneng Complex [39] and the Segwagwa Complex
~intruding the Segwagwa Group - in Botswana [Mapeo
et al., unpublished data].

5.2, Provenance of sediments

Palaeo-current studies in the Pretoria Group in South
Africa indicate variable source directions of the
sediments [9,21,22]; the Timeball Hill Formation has
northwesterly and northeasterly sources whilst the both
Hekpoort and Magaliesberg Formations have westerly
sources [9]. The Botswana Segwagwa Group located
northwest of the main Transvaal Basin and north of the
Grigualand West Basin displays northerly sources. The
oldest concordant detrital zircon grains at ~3.01Ga
could originate from Mesoarchaean basement complex
lithologies exposed in the Northern and Westem
Domains of the Kaapvaal Craton [59,60]. The Westemn
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Domain of the Kaapvaal Craton hosts felsic igneous
rocks emplaced at 2915+9, 2879+9,2781+4 and 2689
+5 Ma [59,61,62]. Detrital zircons with similar ages
occur in the samples RBM2/2001 and RBM4/2001.
Mesoarchaean/Neoarchaean detrital zircons form the
dominant (~79%) population in sample RBM2/2001 at
the base of the Segwagwa/Pretoria Group and decrease
upwards (~19% in the sample RBM4/2001 and 4% in
the sample RBM1/2001) at the top of the succession.
Note the absence of Mesoarchaean zircons in this last
sample. The sample RBM2/2001 contains a large
population of detrital zircons yielding an average date
0f 278 1+7 Ma that is identical to the age of the Gaborone
Igneous Complex [19,63]. This suggests that this
igneous complex was the main source of the sediments,
indicating a proximal source for the basal succession of
the Segwagwa/Pretoria Group. This zircon population
decreases up the stratigraphy, indicating either that this
source region was progressively covered and not
available as a source for detritus or alternatively to
changes in the morphology and hydrological network
patierns resulting in changes of the sediment source area
(s) with ime. The upward increase of the ca. 2.2 Ga
zircon group may berelated to a progressive unroofing of
a Palaeoproterozoic igneous province and/or changes in
the morphology and hydrological network patterns,
resulting in the changes in the source areas of the
sedimentary detritus.

3.3. Detrital zircon of uncertain provenance

The ca. 2.45-2.22 Ga detntal zircons detected
throughout the Segwagwa Group cannot be tied to a
known local source area. No rocks of this age range are
known in the Kaapvaal Craton. Assuming thatthe Rb-Sr
and Pb-Pb whole-rock isochron ages of the Hekpoort
and Ongeluk Formations are representative of their
emplacement ages [8,22,28], one can argue for a local
intrabasinal source for this group of detrital zircons.
However, the Palacoproterozoic detrital zircons show a
broad age spectrum between 2450 down to 2193 Ma,
whereas the Rb-Sr and Pb-Pb isochron dates of the
volcanic sequences in the Pretoria Group are clustered at
~2200 Ma. The Palacoproterozoic detrital zircons of ca.
2200 Ma occur at the base of the Segwagwa/Pretoria
Group sedimentary succession beneath the ca. 2.2Ga
volcanic unit. For this reason, our preferred interpreta-
tion is that these zircons are exotic, i.e. of non-local
source, consistent with new data of Dorland [43], which
indicate that the sedimentary rocks mtercalated with
Hekpoort lavas yielded U-Pb detrital zircon ages of
2225+3 Ma, suggesting the lavas are not the source of

the detrital zircons. The signature of these detrital zircons
is characterized by abundant grains with a broad age
range between ca. 2.45 and 2.20 Ga with a peak at ca.
2300 Ma, rather than displaying ages clustered within a
small age interval. Detrital zircons with ages of ca. 2.4
Ga represent <15% of zircon population in samples
RBM2/2001 and RBM4/2001, whereas those between
ca. 2.3 and 2.2 Ga include 93% of detrital zircons from
sample RBM1/2001. The trends indicate a gradual
involvement of Palaeoproterozoic igneous rocks at the
source of the Segwagwa/Pretoria Group sediments. This
could reflect either a gradual spatial shift of the
Palaeoproterozoic igneous rock area submitted to
erosion or unroofing gradually exposing a Palaeoproter-
ozoic igneous source area.

3.4. Geological implications

Detrital zircon U-~Pb age data in this study suggest
that igneous Palaeoproterozoic rocks (ca. 2.4-2.2 Ga)
were exposed to erosion at the source of the Segwagwa/
Pretoria Group sedimentary rocks. These zircons may
have been derived from a no longer preserved crustal
terrain located north of the Kaapvaal Craton or west of
the Zimbabwe Craton. In the Kaapvaal Craton there are
no igneous rocks emplaced between ca. 2.3 and 2.2 Ga.
In the Zimbabwe Craton, however, Manyeruke et al.
[64] have described the results of dating of a troctolite
sample from the mafic—ultramafic Chimbadzi Hill
intrusion in northwest Zimbabwe, east of the Magondi
Belt, which yielded U-Pb baddeleyite crystallization
ages ranging from 2265.8+4.8 to 2257+9.5 Ma with an
upper intercept age of 2262+2 Ma. It is parallel and to
the northwest of the 2575.4=+0.7 Ma Great Dyke in
Zimbabwe [65]. Globally, the period ca. 2.5-2.0 Ga is
characterized by the occurrence of ultramafic intrusions,
dyke swarms and layered mafic complexes, indicating
continental break-up [5]. In North America, the break-
ups are represented by the Kaminak dyke swarms (ca.
2.54 Ga) in the Heame Province of Canada, Metache-
wan and Hearst diabases (ca. 2.47-2.45 Ga) of Canada
and the final dispersion at ca. 2.2--2.1 Ga is recorded by
the mafic dykes and sill swarms in the Slave, Hearne,
Superior and Nain Provinces [66]. This event of the
development of the Earth’s crust during the Palaeopro-
terozoic appears not to be represented in the Kaapvaal-
Limpopo-Zimbabwe Province.

Detrital zircons with magmatic zircons falling in the
same range as the Segwagwa Group were also
recorded in the Gweta-Magondi Belt of northeast
Botswana [67], a distance of ca. 700 km to the
southwest of the Chimbadzi Intrusion (Fig. 6). The ca.
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Fig. 6. Regional geological map of southemn Africa showing the Transvaal Supergroup rocks and the Kheis-Magondi Belt.

2.3-2.2 Ga zircon grains documented in this paper also
display strong zoning consistent with igneous origin.
Reczko et al. [68] pointed out that there is no evidence
for active margin tectonics during the deposition of the
Pretoria Group, and proposed an intracratonic setting
for the Transvaal Basm in which the Segwagwa/
Pretoria sediments were deposited. Detrital zircons
from the Segwagwa Group display the same *"Pb/
2°Ph fingerprint as metasedimentary rocks of the
Gweta-Magondi Belt, suggesting that these two
depocentres were most likely fed from the same source
(Fig. 5d-e). Igneous complexes with ages between ca.
2.3 and 2.2 Ga are unknown in the Kaapvaal Craton,
implying that this was not a significant sedimentary
source for the Segwagwa/Pretoria Group. This is
supported by palaeo-current directions pointing to a
northerly, northeasterly and northwesterly source of
sediments. These data imply that the main source of
the Segwagwa/Pretoria Group was either the Zim-

babwe Craton or a Palacoproterozoic terrain, which
was located north or northwest of the Kaapvaal Craton
and west of the Zimbabwe Craton/Magondi Belt at ca.
2.2 Ga. An extensive investigation of the Zimbabwe
Craton to assess the presence or not of major ca. 2.3~
2.2 Ga igneous complexes is required in order to
confirm these two alternatives and the role of
intrusions such as the Chimbadzi Hill intrusion as
source of zircon bearing detritus material during the
Palacoproterozoic time.

3.5. Significance for Palaeoproterozoic global
glaciations

Our data which shows the formation age of the Upper
Transvaal Supergroup at ca. 2.4-2.2 Ga provides a new,
minimum age for the deposition of these units in
Botswana, and confirms deposition of these and
correlative units in the Transvaal and Griqualand West
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Basins in South Africa during the first global glaciations
during the Palacoproterozoic. The earliest mid-latitude
glaciations in southemn Africa are recorded in the ca. 2.9
Ga Pongola Supergroup [69]; these were termed the
Earth’s oldest glacial deposits [70]. In North America
(Canada and the USA), the deposition of the Huronian
Supergroup between ca. 2.45 and 2.2 Ga is punctuated
by three periods of glaciations (Ramsay Lake, Bruce and
Gowganda Formation) [10,32,71]. This sequence is
overlain by a thick sequence of sedimentary rocks of the
Cobalt Group and the entire sequence is intruded by the
ca. 2.22-2.21 Ga Nipissing diabase [66]; suggesting that
the glacial deposits of the Huronian Supergroup were
deposited much earlier than ca. 2.2 Ga. The Nipissing
diabase has a similar age to the ca. 2.20 Ga detrital
zircons derived from the Hekpoort Lavas, Mogapinyana
(Dasspoort) and Monotoholwane (Magaliesberg) For-
mations of the Segwagwa/Pretoria Group and the
Chimbadzi intrusion in the northwest of the Zimbabwe
Craton.

Global mafic magmatism at ca. 2.45-2.40 Ga in the
form of major dyke systems, flood basalts and layered
mafic is an accepted event during the Palacoproterozoic
[5]. The ca. 2.45 Ga magmatism in North America
predates the deposition of the Huronian Supergroup
glacial sedimentary rocks, which were therefore depos-
ited between 2.45 and 2.22 Ga, but well before the
intrusion of ca. 2.22 Ga the Nipissing diabase. The
Transvaal sequence of South Africa contains glacial
deposits; the Mak ganyane Diamictite in the Postmasburg
Group, the Bevets Conglomerate in the Duitschland
Formation and a thin diamictite in the Boshoek
Formations of the Pretoria Group [9]. The Boshoek
Formation is a correlate of the Makganyane Formation in
the Grigualand West Basin [10,32,42]. The data in this
paper suggests the Makganyane glaciation occurred in
the interval ca. 2.32-2.21 Ma in the Pretoria/Segwagwa
Group. The new data suggests the period of Palaeopro-
terozoic glaciation within the Postmasburg/Pretoria/
Segwagwa Groups ranges from ca. 2.32 to 2.20 Ga
whilst other low latitudes glaciations in North America,
Fennoscandia and Australia were laid down at ca. 2.45-
2.20 Ga [72]. The depositions of the Mak ganyane glacial
rocks show considerable diachroneity with those in the
Huronian, Hamersley Province of Western Australia and
Fennoscandia of up to ~130 Ma.

6. Palaeogeographic implications
A significant implication of the ages obtained in this

study concemns the palaeogeographic relationship
between the Kaapvaal Craton, the Palaeoproterozoic

Magondi Supergroup and the Zimbabwe Craton
between ca. 2.3 and 2.2 Ga. The current location of
the Segwagwa/Pretoria Group on the Kaapvaal Craton
is an original feature as shown by the unconformity
relationship between the Segwagwa/Pretoria Group
with the Taupone/Chuniespoort/Ghaap Groups [47]. At
the northem margin of the Kaapvaal Craton, the
Magondi Supergroup rocks are affected by Palacopro-
terozoic contractional deformation at 2.03 Ga [73-75].
The Magondi Belt straddles the western margin of the
Zimbabwe Craton, the northwest margin of the
Limpopo-Shashe Belt [76] and the northem margin
of the Kaapvaal Craton, indicating that these last three
units amalgamated before the Ebumean Magondi
orogeny. The similar maximum depositional age of
the Gweta-Magondi Supergroup [64] and the Seg-
wagwa/Pretoria Group (this paper), and their identical
U-Pb zircon fingerprints (Fig. 5a) and the lack of any
plate boundary between the Magondi Supergroup and
the Segwagwa/Pretoria Group sedimentary units imply
that they were both deposited during the evolution of
an extensional basin which closed during the Ebumean
Magondi orogeny. The extension of the Magondi belt
in southern Botswana (westem edge of the Kaapvaal
Craton) is known as the Kheis belt that exposes
Olifantshoek Supergroup metasedimentary rocks
[45,61]. Mapeo et al. [77] have shown that the
Olifantshoek Supergroup lithologies starting with the
Hartley Formation volcanics (dated at 1928 £7 Ma) are
younger than the Magondi Supergroup rocks, and
therefore not part of the same sequence. Furthermore,
recognition by Beukes et al. [48] that: first the Mapedi
and Lucknow Formations of the Olifantshoek Forma-
tion (below the Hartley lavas) are intruded by the ca.
2.05 Ga Bushveld Complex; second the Mapedi and
Lucknow Formations contain &'*C enriched carbonates
similar to carbonates below the Magaliesberg quartzite
in the Transvaal basin and to those in the Lomagundi
Group of the Magondi Supergroup, and lastly were
deformed during the Kheis—Gweta~Magondi orogeny
makes these units belong to the Postmasburg Group of
the Grigualand West Basin and therefore lateral
correlatives of the Magondi Supergroup sedimentary
rocks in the Zimbabwe Craton. This provides the
clearest link between the deposition of the Postmas-
burg/Pretoria/Segwagwa Groups and the Magondi
Supergroup; and their deformation during the Ebur-
nean Magondi orogeny.

The dominant group of detrital zircons in the
youngest sedimentary rocks in the Segwagwa/Pretoria
Group and the Magondi Supergroup rocks (Fig. 5)
suggests that the source of these sediments was most
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probably the same. Taking into account the fact that
the sedimentary transport direction points to a
northerly source for the SegwagwaPretoria Group
sedimentary rocks in Botswana, and that the Seg-
wagwa/Pretoria  Group type platform sedimentary
rocks are unknown in the Zimbabwe Craton, the
most likely palaecomorphology is that of a highland
west of the Zimbabwe Craton which is the potential
source of sediments of both Segwagwa/Pretoria
Groups and Magondi Supergroup. The Magondi
Supergroup was mvolved in a major Palaeoproterozoic
(~2.0 Ga) crustal shortening event and high-grade
granulite facies metamorphism. In contrast, the pre-
surnably coeval and lateral correlative, the Segwagwa/
Pretoria Group, evolved under greenschist facies
metamorphism, with a minimum shortening. This
difference is here taken to reflect a major rheological
and different geotectonic position of the shortened
crust at ~2.0 Ga. The Segwagwa/Pretoria rests on the
Kaapvaal Craton, and, presumably, the thick litho-
sphere related to the strong Archaean mantle keel
beneath the craton [78] protected the craton and the
sedimentary blanket during the Eburnean orogeny. The
Magondi Supergroup was presumably a pristine
Palacoproterozoic basin not underlain by Archaean
lithosphere at the early stage of Ebumean contractional
deformation, and thus possibly represents a section that
was affected by inversion at ca.<2.2 Ga and before 2.0
Ga. The Segwagwa/Pretoria Group is interpreted as a
continental back-arc sequence, associated with rifting
leading to deposition of the minor mafic and
intermediate to felsic metavolcanics and metasedimen-
tary rocks [79]. The initial intracratonic rifting is
indicated by the Bushy Bend lavas (absent m
Botswana), and other indications of the cyclic nature
of the rifting are shown by the Ongeluk/Hekpoort/
Ditlhojana/Tsatsu lavas within the Segwagwa/Pretoria
Group sedimentary rocks [30,46]. The Segwagwa/
Pretoria Group deposition occurred between 2193 £20
and 2054 £9 Ma, which is the depositional time range
of the Magondi Supergroup sedimentary rocks [67].

7. Conclusions

The main results of this study are as follows:

(1) New SHRIMP U-Pb geochronology dates the
maximum depositional age of the Segwagwa/Pretoria
Group at 2193 £20 Ma. The minimum age of this group
is set by crosscutting Bushveld-age Segwagwa Igneous
Complex emplaced at 2055+ 5 Ma. These dates indicate
that the Segwagwa/Pretoria Group is entirely Palaeo-
proterozoic and consists of detritus derived from a

variety of sources, mainly of Palacoproterozoic age with
minor inputs from Archaean sources.

(2) The data indirectly demonstrates the existence in
the neighbourhood of the Kalahari Craton of a crust of
ca. 2.30-2.20 Ga in the source regions of the Segwagwa/
Pretoria Group sediments. The older zircons (>2.4 Ga)
are minor and suggest the bulk of the sediments which
make up the Segwagwa/Pretoria Group in southeast
Botswana were from distal sources.

(3) The majority of the zircons from the upper parts of
the Segwagwa/Pretoria Group show a narrow age
spectrum with well-defined Palacoproterozoic ages (ca.
2.30-2.20 Ga). This pattern is similar to that of
sediments deposited in the Gweta-Magondi Basin.
Sedimentary rocks of the Magondi Supergroup were
deposited after or at 2125+6 Ma and metamorphosed
during the Eburmnean Magondi orogeny at ca. 2027+8
Ma. The deposition ages of the Segwagwa/Pretoria
Group and the Magondi Supergroup (Gweta—Magondi
Basin in northeast Botswana) show overlapping age
spectrums, suggesting that these two basins received
detritus of similar age and probably developed during the
same extensional tectonic cycle marking the develop-
ment of the Pretoria-Segwagwa-Gweta—Magondi
sequences at ~2.2-2.05 Ga.

(4) The maximum age of deposition of the Lower
Transvaal Supergroup is 2431+31 Ma, the age of the
Kuruman Formation. Therefore, the length of the
unconformity between the Lower Transvaal and the
Upper Transvaal ranges from 2431+31 to 219020 Ma,
suggesting the hiatus between the Taupone/Chunie-
spoort/Ghaap and Pretoria/Segwagwa Groups is ~200
Ma. This extremely long hiatus indicates that the Lower
(Taupone/Chuniespoort/Ghaap) and Upper (Segwagwa/
Pretoria) Transvaal Groups cannot be part of the same
supergroup.

(5) The Segwagwa/Pretoria Group glacial deposits
(Makganyane and Boshoek Formation diamictites)
accumulated at ca. 2.32-2.1 Ga, and are thus younger
than Palaeoproterozoic glacial rocks in North America,
Westermn Australia and Fennoscandia, which formed at
ca. 2.45-2.20 Ga. The detrital zircon ages therefore
show a major diachroneity in the deposition ages of the
Palaeoproterozoic glacial deposits in the Kaapvaal
Craton (ca. 2.32-2.1 Ga) and North American cratons
(ca. 2.45-2.2). The data further suggests that the low
latitude glacial deposits of the Makganyane and
Boshoek in southern Africa, Huronian in North
America, Hamersley in Western Australia and Karelian
in Finland and Western Russia represent “snowball-
earth” conditions attained at different times during
Palaeoproterozoic.
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