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Introduction
Recent advances in nanotechnology have been rapid, and have led to 
the fabrication of nanostructures of different geometrical symmetry 
[1-4]. These quantum structures can be employed to realize a plethora 
of devices which utilize different properties of the quantum structures 
to perform various functions. The numerous device applications 
extend over a wide range of fields including biochemical sensing, 
medicine, energy generation and optoelectronics [5-11]. The celerity 
of operation and efficiencies of photonic devices, in particular, 
depend on optical transition rates of the constituent quantum 
structures. It is imperative, therefore, to build an understanding 
of their optical properties in order to optimize the performance 
of such nanodevices. Xu et al. studied transition rates for two 
dimensional quantum cascade lasers [12]. Optical transition rates 
were also studied in silicon nanostructures from photoluminescence 
measurements and in hexagonal nanowires [13, 14]. Studying 
transition rates is crucial also because they are indicative carrier 
lifetimes, which provides vital information with regards to carrier 
collection. For example, a wire-on-well nanostructure grown was 
shown to have enhanced carrier collection due to extended carrier 
lifetimes, or decreased transition rates [15]. In addition, quantum dots 
with different lifetimes have been utilized in cell imaging to obtain 
temporal and spectral resolution [16]. In this report, transition rates 
due to the interaction of electrons with circularly polarized radiation 
incident along the axis of a solid cylindrical nanowire are presented, 

within the dipole approximation framework. The novel feature of 
the system studied here is the confining potential of the quantum 
wire, which is modeled as inversely parabolic in the radial distance.

Theory
The system considered is a free-standing solid cylindrical nanowire 
of radius R and long length LZ with an intrinsic electric confinement 
potential modeled as follows, 

                                                                                                (1)

Where � is the effective electron mass and �0 is angular frequency 
associated with the classical harmonic oscillator. This form of a 
potential is very attractive due to its potential to model cylindrical 
and spherical quantum shells, as well as single-walled and multi-
walled carbon nanotubes. In the effective-mass approximation and 
assuming cylindrical symmetry, the Schrödinger equation can be 
written as

                                                                                                (2)

Where ℏ = ℎ/2𝜋, in which ℎ is Planck’s constant and 𝐸𝑇 the total 
energy of the electron. The Schrödinger equation above is separable 
hence the electron’s wave function 𝜓(𝜌, 𝑧, 𝜙) is sought in the general 
form
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Abstract
Electron transition rates due to interaction with circularly polarized light incident along the axis of a free-standing 
solid cylindrical nanowire are evaluated in the dipole approximation. In this case, the allowed optical transitions 
are only those for which the azimuthal quantum numbers of the initial and final states differ by unity. The envisaged 
electric potential of the quantum wire is modeled as inversely parabolic in the radial distance and such that it assumes 
a value of zero at the surface of the nanostructure. The investigations here are on the influence of this form of the 
confining potential on the transition rates involving some few electrons’ states of higher radial quantum numbers, 
nonetheless limited to transitions only between a pair of the electron’s energy sub bands. It is found that a sweep 
of the strength of the potential gives rise to modulations of the optical transition rates for higher radial quantum 
numbers. Furthermore, an increase of the strength of this potential reduces the transition energies thus such an 
increase redshifts peaks of the corresponding transitions rates.
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                                                                                                (3)

Where 𝐶𝑚𝑙 is the normalization constant, indexed by the azimuthal 
and radial quantum numbers, m and l, respectively, where as 𝑘𝑧 is 
the axial wave number of the electron. The radial part of the total 
electron’s wave function satisfies the following differential equation:

                                                                                                (4)

Where 𝐸𝑚𝑙 is the electron’s confinement sub band energy eigenvalue. 
The differential equation for 𝜒 satisfies Bessel’s equation of fractional 
order 𝜈, thence the complete solution of which is a linear combination 
of the 𝐽𝜈𝑙 and 𝑌𝜈𝑙 Bessel functions [17]. The function 𝑌, however, 
diverges at the origin and is therefore discarded as a solution in a 
solid cylindrical quantum wire. Thus, the solution of the Schrödinger 
equation that is well behaved in the region of the solid cylindrical 
quantum wire is taken as

                                                                                               (5)

Where                                                                  and  

                                                                
                                                              The application of the standard 
boundary condition that the electron’s wave function must vanish at 
the walls of the cylinder (𝜌 = 𝑅) leads to the following eigenvalue 
equation 𝐽𝜈𝑙 (𝜅𝑅) = 0. The electron’s energy spectrum can then be 
mapped out according to

                                                                                               (6)

in which 𝑗𝜈𝑙 is the 𝑙𝑡ℎ root of the 𝜈𝑡ℎ Bessel function 𝐽𝜈𝑙 (𝜍).

Transition rates 
The two rudimentary processes of optical transitions considered 
here are that of absorption or stimulated emission of a photon by 
an electron. In these processes, an electron in an initial state {𝑚,𝑙} 
can emit or absorb electromagnetic radiation of energy equal to 
ℏ𝜔 and thereby make a transition to the final state {𝑚′, 𝑙′}. Such 
a transition is accompanied by a change of the electron’s energy, 
nonetheless, such that the total energy is conserved according to: 
Δ𝐸 = |𝐸𝑚′𝑙′ − 𝐸𝑚𝑙 | = ℏ𝜔. The transition rate from an initial state 
𝜓𝑖 with energy 𝐸𝑖 to a final state 𝜓𝑓 with energy 𝐸𝑓 of the electron 
is given by the Fermi Golden rule [18]. 

                                                                                               (7)

The electron-photon interaction 𝐻𝑖𝑛𝑡 is given by

where 𝐪 the photon field wave vector, 𝐫 the electron position vector, 
𝜖̂ is the unitary polarization vector of the radiation field and A0 is 
the amplitude of the vector potential. The amplitude of the vector 
potential can be written as

where 𝑁𝑞 is the number of photons in volume 𝑉 of the wire of 
dielectric constant 𝜖𝑚 and 𝜖0 is the permittivity of free space. Now, 
for circularly polarized light incident along the axis of the core, 𝐪 = 
(0,0, 𝑞𝑧) and 𝜖 ̂∙ 𝐩 = 𝜌(𝑐𝑜𝑠𝜙 ± 𝑠𝑖𝑛𝜙), where the + (-) is for right (left)
circular polarization. The matrix elements are evaluated as follows

                                                                                               
(8)

where

                                                                                                
                                                                                               

(9)

is the so-called interaction integral and 𝑥=𝜌/𝑅. In the last expression, 
the identity: 𝐩= [�(𝐸𝑓−𝐸𝑖)r]/(𝑖ℏ), in the Heisenberg equations 
of motion for operators, has been used [19]. The Kronecker delta: 
𝛿𝑘𝑧−𝑘′𝑧±𝑞𝑧,0 in equation means that the respective axial wave 
numbers are related according to 𝑘′𝑧=𝑘𝑧±𝑞𝑧, which is simply 
a statement of conservation of axial linear momentum [8]. The 
emergence of the Kronecker delta: 𝛿𝑚−𝑚′±1,0 in equation is rather 
interesting in that it is a mathematical statement of the selection 
rules for the optical transitions considered here [8]. For circularly 
polarized light and in the dipole approximation, the only allowed 
optical transitions are those for which the azimuthal quantum 
numbers of the initial and the final states differ by unity. These 
selection rules of optical transitions apply only to the azimuthal 
quantum numbers and with no restriction on the radial quantum 
numbers. For an electron wave function of the form given in Eq, 
the transition rates are found to be [20, 21].

                                                                                            (10)

where                                                                with 𝑛𝑧 being photon 

linear density. The absorption and the emission transition rates, 
respectively, are explicitly given by   

                                                                                            (11)

and

                                                                                            (12)

Finally, it is helpful especially for purposes of computation, to 
replace the Dirac delta function with a Lorentzian factor according to

in which 𝛾 is the so-called linewidth of resonance. The actual total 
transition rate of the quantum system involves a summation of all 
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the individual transition rates, of course, taking into account the 
transition probabilities of all the allowed transitions.

Results and discussions
The key relevant parameters used in the computations here are 
𝜇=0.067𝑚𝑒, where 𝑚𝑒 is free-mass of the electron and 𝜖𝑚=12.5, 
pertaining to GaAs crystals. The linewidth has been taken as 𝛾=5 
𝑚𝑒𝑉 and 𝑛𝑧=2.895×107/𝑚. The functional forms of the emission 
and absorption optical transition rates are very similar hence, for 
brevity, only the results for the absorption process are shown.

Figure 1: The (𝑚=0→𝑚′=1,𝑙=𝑙′=1) optical transition rates as 
functions of the photon energy in a cylindrical nanowire of radius 
𝑅=120Å and with an inverse parabolic potential of strengths: 
𝜂1=ℏ𝜔0=0 𝑚𝑒𝑉, 𝜂2=ℏ𝜔0=5 𝑚𝑒𝑉 and 𝜂3=ℏ𝜔0=15 𝑚𝑒𝑉

Figure 1 depicts the (𝑚=0→𝑚′=1, 𝑙=𝑙′=1) absorption transition 
rates as functions of the photon energy in a cylindrical nanowire 
of radius 𝑅=120Å for some few different values of the strength of 
the inverse parabolic potential; viz: 𝜂1=ℏ𝜔0=0 𝑚𝑒𝑉, 𝜂2=ℏ𝜔0=5 
𝑚𝑒𝑉 and 𝜂3=ℏ𝜔0=15 𝑚𝑒𝑉, as indicated. Each curve of the 
𝑙=𝑙′=1 transition rate is characterized by a resonance peak in 
its variation with the photon energy. Typically, resonance peaks 
of optical transition rates occur whenever the electron’s energy 
subband separations of the states involved exactly match the photon 
energy. Just like in resonance behavior of a forced simple harmonic 
oscillator, the width of the resonance peak is determined by the line-
width of resonance. It is also seen from figure 1 that these resonance 
peaks shift to lower values of the photon energy as the strength of 
the potential is increased. This is because the energy separations 
between the subbands involved here decrease as the strength of the 
potential is increased. It is interesting to note that this form of the 
potential, in a sense, imparts some fractional angular momentum 
to the electron. In particular, for finite values of ℏ𝜔0, the 𝑚=0 
subband no longer possesses zero angular momentum. This effect 
has a bearing on the phase of the electron’s wave functions across 
the radius of the cylindrical quantum wire. These results compare 
well with the experimental results of radiative lifetimes of excitons 
in quantum GaAs wires, which are of the order of picoseconds [22].

Figure 2: The variation of optical transition rates (from the 𝑚=0 
state to the 𝑚′=1  state) with strength of the inverse parabolic 
potential for radial quantum numbers 𝑙=𝑙′=1,2 and 3, in a cylindrical 
quantum wire of radius 𝑅=120Å. The energy of the incident radiation 
ℏ𝜔=10 𝑚𝑒𝑉

Figure 2 depicts the (𝑚=0→𝑚′=1) optical transition rates as 
functions of strength of the inverse parabolic potential in a cylindrical 
wire of radius 𝑅=120Å,  and at ℏ𝜔=10 𝑚𝑒𝑉, for some few values 
of the radial quantum numbers 𝑙=𝑙′=1,2 and 3, as indicated. Just 
like in figure 1, the curve for 𝑙=𝑙′=1  transition rate is characterized 
by a single resonance peak in its variation with the strength of the 
potential. The curves for the transition rates corresponding to higher 
radial quantum numbers, however, exhibit multiple phase changes 
in their variations with ℏ𝜔0. This behavior of the 𝑙>1 transition 
rates is closely related to the phase changes of the corresponding 
electron’s wavefunctions across the radius of the wire, as ℏ𝜔0 
is varied. Recall that the electron’s radial wavefunctions mimic 
standing waves of a string, with 𝑙 essentially a count of the nodes 
of the wavefunctions. Now, the nature of the inverse parabolic 
potential is such that it “expels” electrons away from the axis of the 
wire, towards the walls of the quantum wire. This is signified by the 
shifting of peaks of electron’s wave functions away from the wire 
axis as ℏ𝜔0 is increased. These phase changes of the wavefunctions 
are then reflected in the behavior of the transition rates in their 
variation with ℏ𝜔0, through the interaction integral. Arguably, the 
occurrence of minima or ̀ secondary’ maxima of the transition rates 
in their variation with ℏ𝜔0 is a manifestation of the degree of overlap 
between the electron’s wavefunctions of the initial and final states.

Figure 3: The (𝑚=0→𝑚′=1,𝑙=𝑙′=3) optical transition rates as 
functions of strength of the inverse parabolic potential in a cylindrical 
nanowire of radius 𝑅=120Å for radiation field energies 𝜐1=ℏ𝜔=10 
𝑚𝑒𝑉, 𝜐2=ℏ𝜔=15 𝑚𝑒𝑉 and 𝜐3=ℏ𝜔=25 𝑚𝑒𝑉
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Figure 3 shows the variation of the (𝑚=0→𝑚′=1,𝑙=𝑙′=3) optical 
transition rates with strength of the inverse parabolic potential in a 
cylindrical nanowire of radius 𝑅=120Å,  for different energies of the 
photon field: 𝜐1=ℏ𝜔=10 𝑚𝑒𝑉, 𝜐2=ℏ𝜔=15 𝑚𝑒𝑉 and 𝜐3=ℏ𝜔=25 
𝑚𝑒𝑉. Again, apart from the anticipated resonance peak, each curve 
of the transition rate possesses `secondary’ maxima and minima 
in its variations with ℏ𝜔0. As mentioned earlier, this is indicative 
of the degree of coherence of the electron-photon interactions, 
as will be reflected in the behavior of the interaction integral in 
its variation with the strength of this potential [17]. Overall, the 
transition rates are lower for higher photon energies. This is because 
the corresponding electron’s energy separations decrease with the 
increase of the strength of this potential.

Figure 4: The variations of the (𝑚=0→𝑚′=1) transition rates with 
the radius of the nanowire for some few radial quantum numbers; 
viz; 𝑙=𝑙′=1,2 and 3, as indicated. The other relevant parameters are 
ℏ𝜔=10 𝑚𝑒𝑉 and ℏ𝜔0=15 𝑚𝑒𝑉.

Figure 4 shows the variations of the (𝑚=0→𝑚′=1) transition rates 
with the radius of the nanowire for some few radial quantum numbers; 
viz; 𝑙=𝑙′=1,2 and 3, as indicated. The other relevant parameters are 
ℏ𝜔=10 𝑚𝑒𝑉 and ℏ𝜔0=15 𝑚𝑒𝑉. It is seen that the resonance peaks 
corresponding to lower radial quantum numbers systematically occur 
at lower values of the radius of the cylindrical wire. The transitions 
are stronger for lower radial quantum number states due to prominent 
phase changes of the corresponding eigenfunctions. Furthermore, 
the electron’s energy subband separations are relatively larger for 
higher radial quantum numbers.

Conclusions
Optical transition rates of a solid cylindrical wire were evaluated as 
functions of the inverse parabolic electric potential of the wire within 
the dipole approximation. The classical radiation field was taken to 
be that of circularly polarized light incident along the axis of the wire. 
For circularly polarized light and in the dipole approximation, the 
allowed transitions are only those for which the azimuthal quantum 
numbers of the initial and final electron’s states differ by unity. As 
anticipated, stronger transitions were found for lower rather than 
higher radial quantum numbers of the electron’s eigenfunctions. This 
is because the phase changes of the electron’s eigenfunctions across 
the nanostructure are more pronounced for higher radial quantum 
numbers. This effect subsequently results in relatively lower values 
of the interaction integral hence lower values of the corresponding 
transition rates. The results shown also suggest that these transitions 
are weaker for greater values of the strength of the electric potential. 
The reason for this effect is twofold. First, an increase of the strength 

of this potential leads to more pronounced relative phase shifts of 
the electron’s eigenfunctions across the radius of the wire. Second, 
the electron’s subband energy separations decrease with the increase 
of the strength of this electric potential. This is particularly so here, 
in the case of a free standing cylindrical quantum wire. Finally, 
inherent in the reduction of the phase-space for the motion of the 
charge carriers, the transition rates become more enhanced as the 
radius of the quantum wire is decreased.
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