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Abstract 

 

Landslides have become the environmentally recognized hazard in hilly regions of Rwanda 

such as Nyabihu district. They are often characterized by the downslope movement of debris 

or other earth materials which damage or destroy everything found in their way such as 

infrastructures, croplands, and even cause a number of deaths. The intense rainfall has been 

noticed as the main trigger of landslides in Rwanda, together with land use/cover change. 

Therefore, the objectives of this study were; to assess the land cover change effects on 

landslide occurrences, evaluate the rainfall variability and its effects on landslide occurrences, 

and predict the occurrence of landslides in the study area. Land use/cover maps of 2005 and 

2015 were generated and overlaid with mapped landslides. Maximum likelihood classification 

was used to classify the Landsat satellite images, and Mann Kendall test was used to assess 

the rainfall trends. The results revealed a remarkable decrease of agricultural land, while all 

other land use/cover types have increased along the mentioned period. It was noted that most 

of the landslides occurred in agricultural land. Also, areas with high rainfall were noted to 

have experienced more landslides than those with low rainfall. Despite the relation of rainfall 

to landslide occurrences, the rainfall variability over a period of time did not always 

correspond to the variation in landslide occurrences. The study also indicated the influence of 

controlling factors (such as slope, soil depth, and distance to road) on landslide occurrences. 

The occurrence of landslides was also predicted using logistic regression model. The model 

showed that an increase in slope angle increases the chances to landslide occurrences, while 

the changes in land use/cover, and rainfall do not necessarily imply the increase in landslide 

occurrences, though they significantly relate to landslide occurrences. The study results are 

expected to be useful for alerting landslide hazard management decisions, land use planning 

and management regulations so as to minimize the likely landslide occurrences and their 

resultant impacts.   
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Definitions of keywords 

 

Geospatial techniques are the techniques of collecting, managing and analyzing geospatial 

data or data associated with geographical location (UN, 2012). 

 

Modelling is the scientific process or activity of making a particular world‘s phenomena 

easier to understand, define, quantify, visualize, and simulate (Waszkowski, 2018). 

 

Landslide hazard is defined as the potential occurrence of a damaging slope failure within a 

given area, and during a given period (Guzzetti, 2005). 

 

Land use denotes a series of human activities done on land to generate products or services 

(INTOSAI WGEA, 2013). 

 

Land cover refers to the observed physical cover of Earth‘s surface, whether areas of 

vegetation, bare soil, hard surfaces, wet areas and water bodies (Eurostat, 2001). 

 

 

 

 

 

 

 

 



1 
 

Chapter 1: INTRODUCTION 

1.1 Background to the study 

Landslides are among the globally recognized environmental hazards that cause numerous 

fatalities and property damages, particularly in mountainous or hilly regions of the world ( 

Huabin et al., 2005; Bennett et al., 2016). Worldwide, rainfall-triggered landslides killed 55 

997 people between 2004 and 2016 (Froude & Petley, 2018). The Global Landslide Catalogue 

(GLC) indicates that 11,033 rainfall-triggered landslides occurred in the world between 2007 

and 2019 (Kostis, 2019). Basically, landslide refers to the downslope mass movement of rock, 

earth or debris (Cruden, 1991; Vasudevan & Ramanathan, 2016). Furthermore, landslide 

hazards have been defined as the potential occurrence of a damaging slope failure within a 

given area, and during a given period (Guzzetti, 2005).  

Worldwide, the severity and frequency of landslides differ from one region to another 

depending on triggering factors or drivers either physical (e.g. rainfall, slope, and soil 

properties, etc.) or anthropogenic (e.g. loading the slopes with buildings and infrastructure, 

changing vegetation cover, etc.) present in the area (Anderson & Holcombe, 2013). Various 

studies have grouped causative factors of landslides into internal and external causes. Internal 

causes include factors such as faults, freezing and thawing of rocks and soils, material 

properties such as compressive strength and shearing strength, etc. On the other hand, external 

causes include factors such as undercutting the foot of the hill slope when extracting minerals 

and excavating for creation of canals or roads, land cover change, exerting unbearable loads 

on slope such as buildings and water tanks, and also vibration induced by earthquakes, etc. ( 

Prasad, 1995; Popescu, 1996; Huabin et al., 2005). 

Climate change has been a global problem which brought several environmental hazards like 

landslides amongst others. With this, various attempts have been made to relate landslides 

with climate change ( Schlögel et al.,2011; Gariano & Guzzetti, 2016; Jeffrey, 2016; 

Turkington et al., 2016). Different regions of the world have experienced tremendous changes 
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in rainfall and temperature as a result of climate change, where in many cases landslides have 

been triggered by heavy rainfall particularly in mountainous areas (Lonigro, Gentile, & 

Polemio, 2015).  

In Africa, climate change has remarkably affected rainfall patterns, where different parts on 

the continent have experienced high rainfall variability with a number of rainfall-induced 

landslides; for instance, the recent landslides triggered by tropical Cyclone Idai in March 

2019 devastated Chimanimani region in Zimbabwe (Petley, 2019).  

Numerous landslides have been noted in equatorial Africa (Kervyn et al., 2016) while in East 

Africa, landslides occur mostly in countries like Rwanda, Kenya, Uganda, Tanzania, and 

Ethiopia, (Knapen et al., 2006:151; Mwaniki et al., 2011; Broothaerts et al., 2012; Bizimana 

& Sönmez, 2015; Tegeje, 2017), which affected not only the environment but also the 

livelihoods, human properties and caused deaths. However, human activities like 

deforestation, clearing vegetation, improper agricultural practices, housing developments on 

steep slopes, road and railway construction, illegal mining, hill cutting, and dams, etc., all 

have direct or indirect effects on slope failure which results in landslide occurrence (Anderson 

& Holcombe, 2013; Dewitte et al., 2017; Froude & Petley, 2018). 

Heavy rainfall, continuous land cover change mostly due to human activities, and other 

factors such as slope, soil depth and structure, and lithology have been noted to induce 

landslides in hilly regions of Rwanda ( Bizimana & Sönmez, 2015; Nsengiyumva et al, 2018). 

These landslide hazards have serious negative impacts on socio-economic livelihoods, 

devastating croplands and settlements as well as causing deaths. According to Bizimana & 

Sönmez (2015), 108 people have died, ten thousand were displaced and left landless due to 

landslides that occurred in Rwanda from 2000 to 2014. In addition, the landslides affect the 

environmental state of the flora and fauna through altering microclimate, soil structure (e.g: 

soil nutrients and organic matter), seed dispersal and vegetation, and hence allowing the 
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heterogeneity of the landscape ( Schuster & Highland, 2004; Elias & Dias, 2009; Geertsema 

et al., 2009).   

With the above mentioned impacts, landslides in Rwanda remain a challenge that requires 

proper monitoring, recording, and reporting throughout the country. Remote sensing and GIS 

have proven to be essential tools for landslide hazard investigations, and modelling of 

causative factors ( Westen, 2001; Tofani et al, 2013; Scaioni et al, 2014). By using remote 

sensing imagery and aerial photography together with field investigation using Global 

Positioning System (GPS), landslide databases can be generated so as to generate landslide 

inventories (Shahabi et al, 2012). 

Geospatial techniques could also be used to analyze landslide causes, and map landslide risky 

areas as well as produce relevant models for landslide predictions. Thus, the use of remote 

sensing and GIS techniques for landslide assessment, and creation of landslide prediction 

models have a key role in providing relevant information to decision makers. Moreover, 

rainfall models can also be used to evaluate the occurrence of landslides. Also, spatial-

temporal rainfall models (Chandler & Wheater, 2002; Kenabatho et al., 2012) can be used to 

establish a link between rainfall and landslide occurrences, and in turn, used to predict their 

occurrence in the future at different sites. Furthermore, landslide hazard modelling is 

important for understanding the triggering or causative factors of landslides as the basis for 

enhancing both landslide risk and environmental management. 
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1.2  Problem statement 

Landslide hazard is a serious issue in hilly regions of Rwanda resulting in a lot of damages 

and people losing their lives, destruction of croplands, and also leaving injuries as well as 

homeless families. Despite all this, only a few researches on landslide hazards have been done 

in the past (MIDIMAR, 2015; MININFRA, 2015). Throughout the country, landslide hazards 

have caused 74 deaths, 22 injuries, and destroyed or damaged 573 houses as well as affected 

656 hectares of croplands in period between 2011 and 2013 and Nyabihu district is the most 

affected (MIDIMAR, 2015).  

The observed drivers of landslides include high rainfall, steep slopes, soil types, and land 

use/cover change. So far high rainfall in steep slope areas has been noted to be the main 

triggering factor of landslides as the continuous high rainfall induces high water saturation in 

soils which reduces the strength of the soils (Bizimana & Sönmez, 2015).  

Rainfall patterns have been changing as a result of climate change which implies the severity 

of rainfall-induced landslides occurring in different parts of the country (Muhire & Ahmed, 

2015; Haggag et al., 2016). Nevertheless, no research has been done to adequately analyze the 

correlation between rainfall and landslide occurrences which could help predict the landslides, 

yet, the gravity of rainfall to cause landslide is also aggravated by human activities that 

destroy the natural land cover when growing crops or constructing houses in steep slope areas 

as result of population growth, and hence heightening the intensity, severity and frequency of 

landslides(REMA, 2015), though it is essential to analyze the relationship between land 

use/cover change and landslide occurrences. Since rainfall and land use/cover change on steep 

slopes have been identified as the main triggering factors of landslides, modelling rainfall and 

land use/cover could assist in predicting landslide occurrences. Furthermore, the application 

of geospatial techniques in providing consistent landslide vulnerability maps have so far 

received limited attention. The application of these techniques could assist in modelling the 

extent and effects of landslide hazards in vulnerable areas such as Nyabihu district.  
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1.3 Aim and objectives of the study 

The aim of this research was to assess how and the extent to which causative factors such as 

land use/cover change and rainfall variability affect landslide occurrences in Nyabihu district 

of Rwanda.  

Specific objectives 

This study was based on the following set of objectives: 

1. Assess the effects of land use/cover change on landslide occurrences. 

2. Evaluate rainfall variability and its implications on the occurrence of landslides. 

3. Predict the occurrence of landslides.  

1.4 Research questions 

Objective1: Assess the effects of land use/cover change on landslide occurrences.  

 -What are the pattern and rate of land use/cover change in Nyabihu District from 

2005 to 2015? 

-How did land use/cover change contribute to landslide occurrence?   

Objective2: Evaluate rainfall variability and its implications on the occurrence of landslides. 

-What are the characteristics and trends of rainfall in Nyabihu District?  

           -How does rainfall amount influence landslide hazard occurrences? 

 Objective3: Predict the occurrence of landslides  

- What is the probability of landslide occurrences given the generated predictive 

model?   

- What are the implications of landslide prediction model outcomes on landslide 

hazard management? 
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1.5 Justification of the study 

In various regions of the world, landslides are one of the natural hazards that have been 

affecting both the environment and livelihoods of populations. Therefore much understanding 

about the causative factors of landslides from one region to another so as to come up with the 

appropriate mitigation measures is required. In Rwanda, landslides have been affecting 

different parts of the country, particularly the hilly regions of western, northern, and southern 

provinces, though the landslides were not recognized as devastating hazards (MIDIMAR, 

2015).  

Since 2010 after the establishment of the Ministry of Disaster Management (MIDIMAR) 

which then systematically recorded landslide events, it was noticed that landslides are among 

the most disastrous hazards in Rwanda due to the number of deaths, and several damages 

recorded as a result of various landslide events. The government of Rwanda has taken 

measures of mitigating or minimizing the landslide risks and vulnerabilities; yet, it is still 

required to have a comprehensive analysis of landslide causes, severity and frequency in hilly 

areas of the country. This must be based on scientific knowledge of mapping areas prone to 

landslides to identify factors responsible for triggering landslides and modelling landslide 

hazards based on these causative factors.  

There is a need to develop landslide prediction models, for example based on rainfall as the 

main triggering factor of landslide in steep terrains of Rwanda, particularly in Nyabihu district 

so as to assist in decision making, and policy formulation related to landslide management. 

 

1.6 Significance of the study  

This study analyzed the causative factors of landslides in Nyabihu district. The results of the 

study will serve as baseline information for landslide hazard management and mitigation 

strategies. They may also help government institutions to draw the district landslide hazard 

preparedness plan. In addition, the results may contribute to policy improvement and 
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enforcement to discourage settlements and improper agriculture practices in landslide prone 

areas. 

Moreover, the study is quite linked to Sustainable Development Goals-Agenda 2030 under the 

13
th

 goal; ―Take urgent action to combat climate change and its impacts”, specifically stated 

in its target one ―Strengthen resilience and adaptive capacity to climate-related hazards and 

natural disasters in all countries”(UN, 2015, p.23). And hence the obtained results on effects 

of each of the landslide causative factors could serve as baseline to persuade the government 

to commit to implementing sustainable development goals in line with the national policy 

vision regarding sustainable disaster management practices (MIDIMAR, 2012).  

  

1.7 Scope of the study 

The study was limited to the landslide causative factors; particularly rainfall, slope and soils 

as well as land use/cover change from 2005 to 2015.  

Geographically, the study covered Nyabihu district situated in northeast part of the western 

province of the country. It is bordered in the north by Musanze district and Virunga National 

Park, South by Ngororero and Rutsiro districts, East by Gakenke district and Rubavu district 

in the West (RoR, 2013). Nyabihu is one of the districts most affected by landslide hazard in 

Rwanda due to the presence of clay, volcanic and lateritic soils which are considerably 

permeable, and hence very susceptible to landslides  (MIDIMAR, 2015; MINAGRI, 2018b).  
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1.8 Study area 

1.8.1 Location and description of the study area  

Nyabihu district is located in the western province of Rwanda between latitude 1°40.443‘ and 

1°40.554‘ South of the equator and between longitude 29°38.295‘ and 29°21.955‘ East (figure 

1.1). 

Nyabihu district is characterized by a continental relief that consists of high, rocky and steep 

mountains with an altitude ranging between 1460m and 4507m (MINAGRI, 2018b). In 

general, the study area presents a mild climate with an annual average temperature of 15
0
C, 

and receives the annual precipitation reaching 1400mm. 

 

 

      Figure 1.1: Location of the study area 
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                                   Figure 1.2: Spatial rainfall distribution in Rwanda  

 

Generally, Rwanda has two rainy seasons; the long rainy season which extends from March to 

May, and the short rainy period extending from October to December. The amount of annual 

precipitation ranges between 1000 mm and 1500mm, with an average annual rainfall of 

800mm (Haggag et al., 2016). The precipitations are unevenly distributed throughout the 

country where the western and northern provinces receive higher rainfall than the eastern 

province (figure 1.2). 

The soils in Nyabihu district are categorized into clay, sandy, lateritic and volcanic (ROR, 

2013), which are usually susceptible to landslides. 

The hydrological network of the district is comprised of several streams, and springs that fall 

in lowland valleys between steep mountains. In terms of vegetation, some parts of the study 

area are covered by exotic species such as eucalyptus on the hillsides and along the roadsides. 

Other areas comprise agricultural fields with a variety of crops, and also grazing lands.  

 

Rwanda rainfall distribution (MIDIMAR, 2015) 

N  o   r  t  h  e  r  n      

p  r  o  v  i n  c  e Nyabihu  

Kigali 
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The recently established Gishwati National Park in 2015(which is dominated by indigenous 

species, and situated in the southwestern part of Nyabihu district) has experienced 

deforestation (e.g. due to settlements, conversion of forest into agriculture and livestock 

farmlands) to the extent that the remaining intact natural forest is less than 7% of the original 

forest (MINAGRI, 2018b). 

1.8.2 Population 

Nyabihu district covers an area of 537.7 Km
2
, hosting nearly 294740 inhabitants with 

population density of 555 inhab/km
2
; i.e.34% of the country‘s population density. About 

86.2% of the district inhabitants live in rural areas (NISR & MINECOFIN, 2012).  

The majority population of Nyabihu district depends on agricultural activities for their 

livelihoods as the main source of food and income. The main crops grown in the district 

include Irish potatoes, maize, beans, sorghum, banana and wheat as well as tea plantation 

(MINAGRI, 2018a). Livestock is also one of the major sources of income for many farmers‘ 

households. Other sources of income include small trading businesses, selling surplus of 

agriculture produce, employment and other occasional small jobs (MINAGRI, 2018a). 

Since land use/cover change is mostly attributed to human activities, the population growth in 

Nyabihu may lead to rapid land use/cover changes, which in turn may increase occurrences of 

landslide hazards in the study area.  
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Chapter 2: LITERATURE REVIEW 

2.1 Overview of landslides  

Landslides refer to environmental processes that lead to natural hazards. They become 

hazards when they threaten human life and property (e.g. buildings, roads, infrastructure), and 

harm the environment (Sears et al., 2019). Generally, landslides are manifested with a large 

mass of earth slides, rocks or debris materials that move down a slope due to natural processes 

or human activities. They mostly occur on steep slope areas or land that has been modified by 

human activities such as construction or deforestation. Landslides occur worldwide but some 

regions are more prone to landslides than others depending on the seriousness of causative 

factors in each region. As it was noticed by Mia et al., (2015), landslides are often caused by 

intense rainfall, slope failure and human activities such as cutting hills for construction and 

vegetation removal. Then, the uncovered land accelerates the water flows and permeability 

resulting in landslide incidents due to weak soil structure susceptible to sliding.  

 

2.2 Slope failure and landslides 

Landslides originate from slope failures due to different mechanisms such as geological, 

hydrological, and seismic factors, etc. It was noticed that geological conditions such as soil 

weathering, composition and type of rock,  as well as the topography of the area are among 

the factors that cause slope failure (Evans et al., 2006; Rusydy et al., 2016). Furthermore, they 

identified massive rock failures like rockslides, rock avalanches, catastrophic spreads and 

rock falls as the major landslide hazards experienced in different parts of the world. Yet, slope 

failures can also be caused by the significant increase of soil moisture and high water 

infiltration during heavy rainfall, which then result in landslide hazards (Orense, 2004). It was 

also noticed that the cyclic shear during the earthquake induces slope failure through rapid 

increase of the pore water pressure inside the mudstone, which lessens considerably the safety 

factor of the slope and hence triggering the landslides (Nakamura, Cai, & Ugai, 2008).  
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2.3 Influence of anthropogenic activities on landslides 

The common human activities that can induce landslide hazards include changing the natural 

drainage patterns, destabilizing the slopes of terrain, and removing the vegetation cover 

(Highland & Bobrowsky, 2008). Similarly, logging activities in steep slopes destroy plant 

roots which act as the natural mechanism of stabilizing slope materials. The disruption of 

surface vegetation cover alters the distribution of soil water and later obstructs the main 

drainage channels (Swanston, 1974).  

In addition, Malgot and Baliak (2002) noticed that landslides in many cases can be triggered 

by deforestation, cultivation on steep slopes, and leakage of underground water pipelines. 

Also, land use/cover change decreases the natural vegetation cover, and increases the bare 

soils susceptible to landslides (Reichenbach et al., 2014). As it was noted by (Karsli et al., 

2009), the spread of settlements or other housing construction on the steep slopes, and the 

extension of road network on hilly topography all destabilize  the balance of the actual slope 

lands and then increase the chances of landslide occurrences. 

  

2.4 Influence of rainfall on landslide occurrences 

Rainfall is the world most triggering factor of landslides (Polemio & Petrucci, 2000). 

Landslides are usually pronounced in environments that experience high and prolonged 

rainfall, but they can be accelerated when the rainfall is associated with other factors such as 

steep slopes, degraded natural land cover, vegetation, soils types and structure (Jeong et al., 

2017). Due to intense rainfall, rain water penetrates into the soil which in turn loses its 

strength, making it susceptible to landslides. Rainfall together with runoff is an important 

agent to sliding of soil mass. The heavy intensity of rainfall accumulates high water runoff. 

Then, the rain water can penetrate into the rock cracks and joints, weakening that land portion 

which may later lead to landslides. 
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 In most cases, the rainfall-induced landslides occur in tropical regions, and sometimes in 

temperate regions where residual soils prevail (Tohari, 2018). 

2.5 Types of landslides 

 

 Table 2 1: Description of landslide types 

Type of 

landslide 

Schematic structure Description 

1. Falls 

 

Falls refer to the abrupt mass movement of 

geological materials (e.g.; rocks, and boulders) that 

are usually detached from steep slopes or cliff. 

Falls can be induced by various factors such as 

gravity, mechanical weathering, and the presence 

of interstitial water 

(Highland & Bobrowsky, 2008,p.6). 

2. Topples  

 

Topples are attributed to the forward rotation out of 

a slope whether that of mass of soil or that of rock 

around a pivot point or axis below the gravity 

forces exerted by the displaced mass. Thus, 

Toppling can occur in different ways; including the 

influence brought by the forces of gravity due to 

the weight of earth material upslope from the 

displaced mass, and also the influence of water or 

ice in cracks in the mass. Hence, topples can be 

rock, debris or earth materials(Highland & 

Bobrowsky, 2008, p.8). 

3. Slides 

 
 

Slides refer to the downslope movements of mass 

of soils or rocks that occur on surface along earth 

rupture or on thin zones of intense shear strain. 

They are usually induced by the weakness of mass 

of soils or rocks that cause the detachment of slide 

material from the stable underlying earth 

material(Highland & Bobrowsky, 2008, p.10). 

4. Spreads  

 

Spreads consist of an extension of a cohesive soil 

or rocky mass that are combined with the 

subsidence of the fractured mass of cohesive 

material into softer underlying material. They can 

be triggered by liquefaction or flow of the softer 

underlying material(Highland & Bobrowsky, 2008, 

p.14).  

5. Flow 

 

 

A flow consists of continuous spatial movement in 

which the surfaces of shear are short-lived, closely 

spaced, or usually not preserved. There are various 

types of flow such as debris flow, volcanic debris 

flows (Lahars), debris avalanche flow, Earth flow, 

mud flow, and creep (slow Earthflow) as well as 

flows in permafrost(Highland & Bobrowsky, 2008, 

p.16).  

   Source: Highland & Bobrowsky, 2008 
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2.6 Impacts of landslides 

2.6.1 Environmental impacts of landslides 

Skrzypczak et al.,(2017) and Kjekstad and Highland (2009) noted several negative impacts of 

landslides on the environment. Landslides transform the natural landscape of an area, and 

intensify the erosion processes. Usually, landslides occur in different materials (e.g. debris, 

rocks, and earth) that move downslope. The mass movement of earth materials changes or 

modifies the landscape, leaving the disturbed land exposed to erosion processes. In some 

cases, landslides can damage forests and hence destroy wildlife habitats. They can modify the 

quality of the organic soil by removing the earth material from, or bringing materials to a 

certain location. 

Landslides can transport excess sediments and deposit them into streams, rivers, and water 

bodies. The sediments can pollute water bodies, harming water quality and fish habitat as 

well. 

The impacts of landslides do not always have to be negative as landslides can also balance the 

ecological system for both aquatic and terrestrial biodiversity. It was noticed that debris flows 

and other mass movement can maintain riffle habitat in streams mainly due to sediments and 

coarse debris supplied by landslides (Kjekstad & Highland, 2009).  

 

2.6.2 Socio-economic impacts of landslides 

In many cases, landslides affect the socio-economic livelihoods of people. In populated 

mountainous regions, landslides often result in huge property damage such as destruction of 

infrastructures (e.g settlements, roads), damages of crop fields where the grown crops at the 

time of landslide occurrence can totally be taken away or covered by the debris flows. 

Furthermore, devastating landslides can break the access to and from remote communities. 

This can impede provision of services like health, education, movement of goods and people 

and other social activities (Palmer et al., 2016). According to Kjekstad and Highland (2009), 
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economic losses due to landslides can be classified into direct and indirect costs. Direct costs 

include the repair, replacement and maintenance of damaged property, and indirect costs 

include loss of industrial, agricultural, and forest production as well as the tourism revenues 

due to the damage of facilities or interruption of transportation systems, etc.  

Winter and Bromhead (2012) summarize economic impacts of landslides into three different 

categories including direct economic impacts, direct consequential economic impacts, and 

indirect consequential economic impacts. Direct consequential economic impacts commonly 

refer to the costs induced by the destruction of a particular infrastructure or loss of utility such 

as the costs of closing a road for a given period, and the costs of deadly injuries. Thus, 

indirect consequential economic impacts mostly include the effects of landslides in remote 

rural areas where the economies usually depend on transport-dependent activities. The 

vulnerability can be extensively determined by the disruption of transport network rather than 

just the landslide event itself. This is determined by the challenges of accessing market places, 

which then limit the flow of products (e.g. agriculture produce), and hence affecting the 

market prices. 

2.7 Rainfall and landslide hazards in Rwanda 

Rainfall is a major weather and climate parameter that induces a number of hazards (such as 

landslides and floods) in Rwanda. During rainy periods, a number of landslides occur in the 

regions of the western, northern and southern provinces of the country (Western province 

being the most affected by landslides) due to their landscape characteristics of hills and 

mountains compared to the rest of the country(MIDIMAR, 2015).  

Besides the high rainfall regime in the hilly topography of the regions, landslides are also 

influenced by other factors such as soil types and structure, anthropogenic factors like 

improper agriculture practices in steep slopes, human settlements and deforestation. 

Landslides in Rwanda are mainly categorized into debris flows (Bizimana & Sönmez, 2015) 

which move downslope from the upslope transporting everything attached to them and also 
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anything found on their way including vegetation cover, houses, and other human properties. 

These types of landslides are often triggered by high rainfall which prolongs to the extent that 

the soil becomes unstable and ends up with downward sliding. 

 

2.8 Modelling the occurrences of landslides 

The occurrences of landslides have been modelled using different methods depending on 

pertinent landslide causes from one region to another. Various statistical-based models such 

as logistic regression, neural network analysis, data-overlay, index-based and weight of 

evidence analyses as well as machine learning methods have been used elsewhere to model 

landslide occurrences (Reichenbach et al., 2018). Using logistic regression model, Duman et 

al.,(2006) characterized the influence of different factors such as slope, aspect, elevation, 

stream power index geomorphology and geology units as well as lithological units in inducing 

the landslides occurrences and then successively (at 83.8%) generated landslide susceptibility 

map of the landslide prone areas. With the use of ANN and weight of evidence models, Wang 

et al.,(2016) analyzed and mapped landslides prone areas using landslide-occurrence factors 

similar to those used  by Duman et al.,(2006) and obtained successful results at 82.51% and 

79. 82% from ANN and weight of evidence models respectively.  

In this study, logistic regression model was chosen over other methods due to its advantages 

in modelling the binary dependent variable (Korkmaz et al., 2012) through generating a fit 

model that best defines the relation between the dependent and independent variables. It was 

particularly proven useful when predicting the presence or absence of the dependent variable 

(the occurrence or non-occurrence of landslides in the context of this study) based on values 

of the predictor variables (Lee, 2005). Logistic regression method incorporates either 

continuous or discrete variables, or even combines both types without necessitating the 

normal distribution of variables (Rasyid et al., 2016). Compared to the Artificial Neural 

Network models which are more complex and susceptible to over fitting, logistic regression 
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model was proved to be less complex and even minimize the risk of over fitting (Dreiseitl & 

Ohno-machado, 2003). Also, it is possible to test the statistical significance of variable 

coefficients in the logistic regression model. 

 

2.9  Literature highlights 
 

Table 2.2 presents a summary of literature highlights as shown below: 

      Table 2 2: Literature gap 

Author (s) Title of the 

study 

Key findings Gaps identified 

Bizimana & 

Sönmez, (2015) 

Landslide 

occurrences in 

the hilly areas 

of Rwanda, 

their causes and 

protection 

measures. 

Causes of 

landslides 

identified, and 

preventive 

measures 

summarized  

No spatial mapping of landslide 

events location, No quantitative 

analysis of correlation between 

triggering factors (e.g rainfall, land 

use/cover) and landsides. 

Nsengiyumva et 

al.,(2018) 

Landslide 

susceptibility 

assessment 

using spatial 

multi-criteria 

evaluation 

model in 

Rwanda. 

Landslide 

susceptibility 

mapping at 

national scale 

Landslide susceptibility mapping  at 

small scale not yet done,  

no attempts made to predict landslide 

occurrences 

MIDIMAR(2015) The National 

Risk Atlas of 

Rwanda. 

Landslide 

causative 

factors were 

spatially 

mapped  

Lack of landslide susceptibility 

mapping at small scale, lack of 

quantitative analysis of relationship 

between causative factors (e.g. 

rainfall) and landslide occurrences, 

still no prediction of landslide, the 

location of landslide events were not 

mapped. 

   Source: Own, 2019 

From the gaps left out by previous researches, this study focused on mapping the location of 

landslides in the study area, and analyzed the correlation between landslides and causative 

factors as well as predicted the probability of landslide occurrences. 
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2.10 Conceptual framework 

Landslide is an environmental hazard resulting from different factors both natural and human 

induced. For the purpose of this study, landslide hazard in Nyabihu district of Rwanda was 

modelled by focusing on natural and anthropogenic landslide-triggers which are rainfall and 

land use/cover change respectively, but also taking into consideration the conditioning factors 

of landslides. The landslide conditioning factors in the study area include the slope, soil depth, 

and the distance to road.   

This study quantitatively analyzed the influence of rainfall and land use/cover change in 

triggering landslides. Figure 2.2 presents the conceptual framework (Izuogu et al., 2015) on 

the relation of triggering and conditioning factors to landslide hazards.  In this study, landslide 

conditioning factors are considered as necessary but not sufficient conditions for causing 

slope failure, while triggering factors are the external stimulus that aggravate the stresses or 

considerably reduce the strength of slope materials (Wieczorek, 1996). 

Both conditioning and triggering factors are independent variables that cause landslides. Thus, 

intervening variables are considered as the actions that could be taken for landslide hazard 

management aiming to reduce the impacts of landslides. These can be usually assigned to the 

intervention of the government and its stakeholders through planning and implementation of 

policies and regulations regarding hazard management. For example, appropriate land use 

planning followed by successful implementation would minimize landslide occurrences 

resulting from improper infrastructure construction and agricultural practices on steep slopes. 

On the other hand, the effective mitigation measures are essential in areas prone to landslides. 

Yet, the consistent mapping of landslide risky areas requires the adequate analysis of the 

significance of the causes of landslides. As an outcome, the effective landslide mitigation 

measures will not only reduce socio-economic impacts that could result from landslides in 

Nyabihu district, but also will minimize environmental impacts as long as the land use is 

properly managed.  
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     Figure 2.1: Conceptual framework adapted from Izuogu et al.,(2015) 
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Chapter 3: METHODOLOGY 

3.1 Research design 

This study used quantitative research methods to analyze the rate of land use/cover changes, 

and the relationship between landslides and their causative factors. The study applied remote 

sensing and GIS techniques and statistical analyses.  

The study mostly used secondary data that were collected through different techniques, and 

analyzed in order to achieve the aim and objectives of this study as shown in the flow chart 

below (figure 3.1).   

        Figure 3.1: Research design 
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3.2 Materials and Data for the study 

This study mostly used secondary data to achieve the aim and objectives. These data mainly 

came from spatial data (satellite images, raster data, and shapefiles), and rainfall data that 

were collected from Rwanda Meteorological Agency. Other ancillary data such as soil depth, 

slope, and road buffer were acquired from the district office.  

A 30m DEM based on Aster imagery was collected from USGS whilst the topographic 

parameters such as slope and aspect were calculated from the DEM using ArcGIS software. 

There was no proper record of historical landslides. In fact, government institutions in charge 

of hazard management usually assess the impacts from landslides in a particular area with the 

aim of helping the affected families. So, recording the geographical coordinates of each 

occurred landslide was so far not taken into account. With this, the high resolution google 

earth imagery of 2005 and 2015 were used to extract the geographical coordinates of visible 

landslides. The satellite images that were used are presented in table below (table 3.1).   

           Table 3 1: The satellite images used in the study 

Image Acquisition 

date 

Path/Row Spatial 

resolution 

Cloud cover 

Landsat 7 2005 173/61 30 m Free of cloud cover (0%) 

Landsat 8 2015 173/61 30 m cloud cover of 10.66% ,but 

free of cloud cover in the 

study area 

          Source: Own, 2019 

The selection of the Landsat images is due to their long archive and free availability compared 

to other satellites such as SPOT images. However, it is a challenge to find a good satellite 

image of the study area due to the geographical location of the area which usually presents 

thick continuous cloud coverage for almost all months of the year. The Landsat satellite 

images of 2005 and 2015 were the sources of data from which geospatial techniques were 

applied to analyze the land cover change and produce land cover maps of the study area. 

These satellite images were downloaded from USGS (https://earthexplorer.usgs.gov/). As 

they were covering other areas that are not part of the study area, images were subsetted in 

https://earthexplorer.usgs.gov/
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order to have images covering only the study area. Table 3.2 presents the required data for 

this study. 

                      Table 3 2: Required data and their sources 

Data Parameter Data type Type of 

variable 

Level of 

measurement 

Data 

source 

Satellite 

imagery 

Land 

use/cover 

type 

Qualitative Categorical Nominal USGS 

Land 

use/cover 

change (%) 

Quantitative Discrete Ratio USGS  

DEM Slope angle, 

aspect 

Quantitative Continuous Ratio USGS  

Rainfall Precipitation Quantitative Continuous Ratio RMA 

Soil Soil depth Qualitative Categorical Nominal Nyabihu 

district  office 

Distance 

to road 

Road buffer Quantitative Discrete Ratio Nyabihu 

district  office 

     Source: Own construct (2019) 

3.3 Research Methods 

3.3.1 Objective 1: Assess the effects of land use/cover change on landslide occurrences. 

3.3.1.1 Image pre-processing  

To carry out land use/cover classification and analyze land use/cover classes, Landsat 7 

ETM+ (path 173, Row 61) acquired on 21
st
 February 2005 and Landsat 8 OLI (path 173, Row 

61) acquired on 21
st
 September 2015 were downloaded and used for this project. These 

images were downloaded from (https://earthexplorer.usgs.gov/). After downloading, the 

satellite images were layer stacked and subset processes were done so as to prepare the 

images for further processing and analysis. ERDAS IMAGINE 2018 was used for carrying 

out the required preprocessing.  

The images of the study area were subset using the boundary shapefile of Nyabihu district as 

the template. Different pre-processing techniques were used to prepare images for further 

processing and analysis techniques. These include; radiometric correction, atmospheric 

https://earthexplorer.usgs.gov/


23 
 

correction and topographic correction. Radiometric correction is ―the removal or 

diminishment of distortions in the degree of electromagnetic energy registered by each 

detector‖ (Eastman, 2003).  

Radiometric correction was carried out in order to calibrate the radiance of reflectance values 

in the images, and to allow more assessment of ground surface properties and then facilitate 

the analysis of the mentioned satellite images. With this, strips in Landsat 7 ETM+ were 

removed which allowed overcoming the limitation of lacking information in strips, and hence 

increasing the certainty in analyzing the image. On the other hand, atmospheric correction 

was not much of concern in this study since post-classification comparison method that was 

applied for detecting land use/cover change also compensates for variations in atmospheric 

conditions (Mausel et al., 2004). 

3.3.1.2 Image processing and analysis 

Supervised Classification was used to classify different land uses/covers in Nyabihu district 

for the periods 2005 and 2015. Supervised classification is ―the method through which the 

analyst defines small areas called training sites on the image, which contains the predictor 

variables measured in each sampling unit, and assigns prior classes to the sampling‖ (Černá 

and Chytrý 2005 as cited in Al-doski et al., 2013).  

Supervised classification was chosen for this study because it allows the user to fully control 

the information categories or classes that will be included in the final image classification 

(Enderle & Weih, 2005). Furthermore, the spectral information of LULC classes are 

distinctively examined in supervised classification while in unsupervised classification, the 

computer itself determines the spectral classes and then defines their information value (Al-

doski et al., 2013). 

Specifically, supervised maximum likelihood classification technique was used in this study. 

Supervised maximum likelihood classification is widely used not only due to its relative 

simplicity and robustness, but also due to its ability to define means, variances and 
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covariances of training samples (Gao & Zhang, 2009).  

For the classification of images of the study area, more than 30 training samples for each land 

use/cover class were taken to ensure the representativeness of pixels. Thereafter, Recode tool 

in ERDAS IMAGINE was used to correct the misclassified pixels during the classification 

process. Image Recoding allows the user to increase the certainty of classified images by 

correcting the errors in image classification results. This was done by using the Google earth 

images for 2005 and 2015, which were linked to the classified images of the corresponding 

mentioned years in order to check the correctness of the classification results. 

After classifying the land use/cover classes for each image, the post-classification comparison 

method was utilized to detect land use/cover changes that have occurred between 2005 and 

2015.  Post-classification comparison separately classifies multi-temporal images into 

thematic maps and then compares the classified images, pixel by pixel (Mausel et al., 2004). 

This technique was preferably chosen due to its twofold advantages over other change 

detection techniques: Firstly, it minimizes the effects of atmospheric sensor and 

environmental differences between multi-temporal images, and secondly, it provides the 

complete matrix of change information (Mausel et al., 2004).  

The rate and percentage of land use/cover changes are computed using the equations 1, 2, and 

3. 

                     
                 

∑        
 
   

         (1) 

 

                      
                 

      
     (2) 

                        
                 

∑                
 
   

       (3) 

 

Where, Ayear i represents an area of cover i at the first date,  Ayear i+1 represents the area of 

cover at the second date, tyears represents the period between the first and second dates, and n 

represents the number of years within an interval. 
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Finally, ArcGIS 10.5 was used to generate the land use/cover maps. Figure 3.2 illustrates the 

workflow followed in analyzing the satellite images. 

 

                      Figure 3.2: Workflow of image analysis 

 

3.3.1.3 Classification accuracy assessment  

Accuracy assessment is considered as the final step in satellite image analysis, aimed at 

verifying how accurate the produced results are after completing the interpretation or 

classification of the image. The accuracy assessment basically seeks to quantitatively assess 

how effective the pixels taken during the classification process are sampled into the correct 

land use/cover classes (Rwanga & Ndambuki, 2017). With this, a total of 120 equalized 

randomly sampled reference points were created in each classified image of the study area to 

assess the accuracy of the classified images. Figure 3.3 shows the Google Earth images of the 

study area for the two periods.  
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  Figure 3.3: Google Earth image of the study area in 2005 and 2015 

The obtained overall classification accuracy was 85% and 90% for 2005 and 2015 

respectively (table 3.3). The overall Classification Accuracy equals to the number of correct 

points divided by the total number of sampled points. Generally, this overall accuracy is given 

by equation 4 below:  

 

                 
 

 
∑    

 
                                (4) 

 

Where, x represents the individual cell values, xii represents the total number of observations 

in row i and column i, n is the total number of classes, and N the total number of samples.  

Furthermore, KAPPA is another multivariate statistical measure used in accuracy assessment 

(Cohen, 1960). It helps by comparing classification results from different regions of the 

classified image. KAPPA analysis results are presented as KHAT statistic which is also a 

measure of accuracy (Congalton, 1991). 

KHAT statistic is given by the following formula:  
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        (5) 

Where; 

n is the number of rows in the matrix,  

Xii= the number of observations in the row i and column i, 

2005 2015 
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Xi+ and X+i= the marginal totals of row i and column i respectively, 

N= the total number of observations.  

The Overall Kappa (K) statistics of classified images are 0.82 and 0.88 for 2005 and 2015 

respectively (table3.3). According to KHAT‘s categories by Landis & Koch ( 1977), a KHAT 

value ranging between 0.81 – 1.00 represents a perfect agreement. With the fact that the 

obtained overall Kappa statistics (K) fall into that range, they are good enough to continue 

with further analysis. Producer‘s accuracy and user‘s accuracy (Patel & Kaushal, 2010) are 

calculated using the equations (6) and (7).  

                    
                                                              

                                               
     (6) 

 

                
                                                              

                                           
       (7) 

Producer‘s accuracy refers to the probability that any pixel in a land use/cover category has 

been correctly classified, while user‘s accuracy refers to the probability that a classified pixel 

on the image represents actually that category on the ground. 

                       Table 3 3: Image classification accuracy assessment results for 2005 and 2015 

 Landsat 7 ETM+, image 

2005 

Landsat 8 OLI&TIRS, 

image 2015 

Land use/cover 

type  

Producer’s 

accuracy 

(%) 

User’s 

accuracy 

(%) 

Producer’s 

accuracy 

(%) 

User’s 

accuracy 

(%) 

Agricultural land 64.52 100 73.08 95 

Bare land 50 100 100 100 

Built-up 92.86 65 93.33 75.00 

Forest 89.47 85 86.96 100 

Grassland 90.91 100 100 85 

Tea plantation 93.75 75 94.74 90 

Water 100 84.21 100 100 

Overall 

classification 

accuracy 

85% 90% 

Overall Kappa 

Statistics 
0.8208 0.8804 

                           Source: Analysis, 2019 
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3.3.1.4 Identification of landslides 

Since landslides spectral reflectance may be quite similar to bare land (such as exposed rocks, 

gravel roads, etc.) or ploughed fields, which could affect the accuracy of image classification 

results, Google Earth images were utilized to identify landslides in the study area by using 

computer screen-based visual image interpretation technique (Xu, 2015).  Google Earth 

imagery has high spatial resolution which helps accurately discern landslides from other 

ground features. Visual image interpretation was chosen over supervised classification 

technique because it helped to precisely locate landslides based on their rough texture and 

shape which differ from the one of surrounding ground features (e.g. vegetation, and 

rectangular shape of croplands). From Google Earth images of 2005-2017, landslides points 

were identified and compiled in Excel. Then, landslides points were imported into ArcGIS to 

be processed and overlaid with classified images for further analysis. Using these techniques, 

8 landslides were identified in Google Earth image of 2005 and 34 landslides were identified 

in that of 2015. 

3.3.2 Objective 2: Evaluate rainfall variability and its implications on the occurrence of 

landslides.  

Mann-Kendall test was applied to assess the rainfall trends recognized along the period from 

1997 to 2017. Mann-Kendall refers to a non-parametric test or in other words implies its 

ability to work for all distributions without requiring any particular assumptions like the ones 

of normality and linearity amongst others (Libiseller & Grimvall, 2002). Two Mann Kendall 

test statistics (S and Z statistics) were used to evaluate the behavior of trends based on the 

number of data values. S statistic is used when the data values are less than 10, and Z statistic 

is used when the number of data values is greater than or equal to 10 (Hussain et al., 2015; 

Thenmozhi & Kottiswaran, 2016). 

The Mann Kendall test Z statistic is calculated using the following equation: 
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 (Blain, 2013; Pohlert, 2018):   (8) 

 Where, S is the Mann-Kendall test and Var (S) is the variance of S. 

 

And the Mann Kendall test S statistic, on the other hand, is given by the equation below: 

 

  ∑ ∑    (     )
 
     

   
                              (9) 

 

Where, xj and xi represents the annual values in years j and i (j> i), and n represents the 

number of data points, while sgn (xj-xi) is computed in the following equation (10) 
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            (10) 

 

The statistical significance of the trend depending upon the number of data values is assessed 

using the two mentioned statistics, whereby the positive values of S and Z statistics indicate 

the upward (increasing) trends in the data series, while their negative values indicate the 

downward (decreasing) trends. On the other hand, Sen‘s slope is also a non-parametric test 

that was used to assess the significance of the trend. It is given by the following equation: 
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Where, Qi is the Sen‘s slope, and T is the slope of all data pairs calculated using the equation 

below: 

   
     

   
                        (12) 

With xi and xk; the data values at time j and k (j>k). 

The positive value of Qi shows the upward (increasing) trend while the negative value of Qi 

indicates the reverse. 
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Mann Kendall test statistics were computed in R-software. The linear trend lines were plotted 

using Microsoft Excel 2010. The Inverse Distance Weighted (IDW) method using ArcGIS 

software was applied to interpolate the spatial distribution of precipitation in the study area. 

Moreover, the rainfall data and landslide data were integrated into ArcGIS software in order 

to map the spatial distribution of rainfall and the location of landslides. 

  

3.3.3 Objective3: Predict the occurrence of landslides  

3.3.3.1 Logistic regression model 

In order to achieve the above mentioned objective, logistic regression was used. Unlike 

simple and multiple linear regression which assess the linear relationship between variables, 

logistic regression has been proven to be advantageous in determining the relationship among 

independent variables and a dichotomous variable (dependent variable) without assuming the 

linear function between them, or having a lot of requirements (Mousavi et al., 2011, Fang, 

2013). In addition, in logistic regression the variables can be measured in all levels of 

measurements which are nominal, ordinal, interval and ratio. Logistic regression was used in 

this study to relate the selected landslide causative factors with the landslide occurrence by 

identifying which factors best fit the model. It was used to model the probability of landslide 

occurrences based on the observed values of predictor variables.  

The probability of landslide occurrences as described in Lee (2005) and Akgun et al.,( 2011), 

was modelled  using the logistic regression equation expressed in the following form: 

 

   
 

      , with 0 < P   < 1                                    (13) 

 

Where P represents the probability of landslide occurrence, and Z is the linear combination 

expressed as: 

                           ,   with - ∞ < z< + ∞ (14) 
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Where B0 is the intercept of the model and n is the number of independent variables. The Bi 

(i=0, 1, 2,…n) are the slope coefficients of the logistic regression model while the Xi (i=0,1, 

2, …, n) are the independent variables. Hence, from equations (13) and (14), the equation of 

the logistic regression can be expressed in the extended form as: 

 

  
 

    (                     )                          (15) 

 

 

In this study, 34 landslide points identified on Google Earth image of 2015 were used in 

building the logistic regression model. Image of 2015 was selected over the one of 2005 

because it was in 2015 that an important number of landslides occurred in comparison with 

only 8 landslides identified in the image of 2005. Also, landslides have been increasing in 

recent times. This required the use of the land use/cover classified from Landsat image of 

2015 as well in order to match the period.   

In addition to the total of 34 landslide points, other 34 points for non-occurrence of landslides 

in the study area were randomly created within ArcGIS environment (Mousavi et al., 2011). 

Hence, the value ―1‖ was given to the occurrence of the landslide and the value ―0‖ to the 

non-occurrence of the landslide in order to analyze the relationship between landslides (binary 

dependent variable) and causal factors (predictor variables). 

All landslide causative factors selected for this research which are slope angle, aspect, soil 

depth, distance to the road, land use/cover, and rainfall of those 68 points were extracted 

using ArcMap 10.5. They were all projected to the same projection system 

(WGS_1984_UTM_Zone_ 35S) of the Landsat projection, and then input into the backward 

stepwise (Wald) logistic regression to carry out the statistical analysis.  

Backward stepwise (Wald) logistic regression ( also known as Backward elimination 

regression) begins a model in which all independent variables are initially included and then 

excludes the insignificant variables step by step, using the probability of Wald statistic 
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(Korkmaz et al., 2012; Muchabaiwa, 2013) in order to find a reduced model that best explains 

the data or in other words to maximize the predictive power of the model.  

 

3.3.3.2 Logistic regression model assessment and validation 

Before applying a model in any decision making purpose, it is good to check the adequacy of 

the model. According to Peng et al., (2002), an adequate logistic regression model has to be 

justified by some key parameters such as the overall test of all parameters, a statistical 

significance of each predictor, the goodness-of-fit statistics, the predictive power of the 

model, and the interpretability of the model. Yet, Nagelkerke R
2
 was used to assess the 

efficiency of the model. As it was stated by Hosmer & Lemeshow (2000), the higher value of 

Nagelkerke R2 indicates the perfection of the model while the lower value indicates the poor 

relationship between dependent and independent variable.  

In addition, Wald statistic is also a parameter used to assess the fitness of a model as it was 

suggested by Field (2009). The Wald statistic indicates the contribution of each predictor in 

logistic regression model, while other parameters assess the characteristics of the whole 

model. The variable that is important in the model has a coefficient with a p-value of the 

Wald statistic less than 0.05 (significance level) ( Peng et al., 2002; Muchabaiwa, 2013). On 

the other hand, it was found that the small Hosmer-Lemeshow test statistic with a p-value that 

is greater than the significance level (0.05) implies the goodness of fit of the model (Hosmer 

& Lemeshow, 2000; Peng et al., 2002; Muchabaiwa, 2013).  

The model was validated using Pseudo R
2 

value of which the pseudo R
2
 value of 1 indicates 

the best model fit, while a value of 0 implies that there is no relationship. Similarly, a pseudo 

R
2
 value that is greater than 0.2 indicates a relatively good model fit (Sangchini et al., 2015; 

Kouhpeima et al., 2017).  Furthermore, the area under ROC (receiver operating characteristic 

curve) has been proven useful in the assessment of the adequacy of logistic regression model 

(Bewick et al., 2005; Gorsevski et al., 2006). Thus, from the area under the ROC value 
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ranging between 0.5 and 1, the value 1 indicates a perfect fit while the value 0.5 implies a 

random fit (Ayalew & Yamagishi, 2005).  

In this study, the concerned dependent variable is the landslide which was assigned the value 

―0‖ for the non-occurrence of landslide and the value ―1‖ for the occurrence of landslide. 

                                   Table 3 4: Variables used for logistic regression model 

Independent variables Dependent variable 

Precipitation 

Landslide 

Land cover 

Slope Aspect 

Slope angle 

Soil depth 

Distance to road 

                           Source: Own, 2019 

The values of independent variables were collected for each identified landslide point and 

organized within Excel. Thereafter, the values were imported into SPSS for logistic regression 

analysis.  
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     Table 3 5: Summary of data collection and analysis techniques 

Objective Research question Variable 

(key word) 

Data collection 

techniques 

Data analysis 

techniques, and 

software 

Assess the 

effects of 

land use/ 

cover 

change on 

landslide 

occurrences  

-What are the pattern 

and rate of land 

use/cover change in 

Nyabihu District from 

2005 to 2015? 

-How did land 

use/cover change 

contribute to landslide 

occurrences?     

-Land 

use/cover 

-Landslide   

- Satellite images 

- Field visits  

- Acquire data 

from Nyabihu 

district office,  

and MINEMA 

-Supervised 

maximum 

likelihood 

classification 

-Post-

classification 

comparison 

method 

- ERDAS 

IMAGINE 

- ArcGIS  

Evaluate 

rainfall 

variability 

and its 

implications 

on the 

occurrence 

of landslides  

-What are the 

characteristics and 

trends of rainfall in 

Nyabihu District from 

1997-2017? 

-How does rainfall 

amount influence 

landslide occurrences?  

-Rainfall 

-Landslide  

- Acquire data 

from RMA  

 -Satellite images  

- Mann-Kendall 

test 

- R-software 

- Microsoft Excel  

Predict the 

occurrence 

of landslides 

- What is the 

probability of 

landslide occurrences 

given the generated 

predictive model?  

-What are the 

implications of 

landslide prediction 

model outcomes on 

disaster management? 

Landslide 

causative 

factors  

- Acquire data 

from the  above 

mentioned 

government 

entities 

- Satellite images  

- Logistic 

regression model  

- SPSS  

- ArcGIS 

   Source: Own, 2019 

3.4 Research ethics 

Research ethics are broadly explained as ―a set of standards, values, and institutional 

arrangements that contribute to constituting and regulating research activities” (NENT, 

2016, p.5). In this study, it was the responsibility of the researcher to be honest with and show 

respect to people that participated in the research. Research participants included workers in 

government institution such as Nyabihu district office, MINEMA, RMA, and all other people 

who provided the information needed by the researcher. 
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The researcher ensured that the research is conducted with honesty, integrity, truthfulness, and 

objectivity. With all possible respect, the researcher sought consent for all participants for 

their participation in the research. Further, the researcher complied with the established 

regulations concerning research including the regulations of the University of Botswana. With 

this, the researcher sought the research permit from the University‘s office of the Research 

and Development. The research permit was always presented to participants that were to be 

consulted along the data collection process to ensure the confidentiality in using the provided 

data or the reliability and validity of the research. Government entities consulted in the data 

collection process include the Ministry of Emergency Management in Rwanda, Rwanda 

meteorology Agency, and the office of Nyabihu district.  

 

3.5 Validity and reliability 

Validity refers to ―the extent to which a concept is accurately measured in a quantitative 

research‖ (Heale & Twycross, 2015). In line with this definition, the researcher went to the 

field to check the land use/cover categories available in the study area. In addition, all data 

provided were effectively crosschecked before engaging in any further analysis procedure.  

Reliability, on the other hand, is defined as‖ a consistency of a measure‖ (Heale & Twycross, 

2015) or ―the extent to which a phenomenon provides stable and consistent results with 

repeatability‖(Taherdoost, 2016). For this, the researcher took sufficient reference data points 

during the accuracy assessment of image classification results, and performed the assessment 

or validation of the generated statistical model to ensure that the produced results are accurate 

and replicable. 
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Chapter 4:  RESULTS AND DISCUSSION 

Overview 

This chapter presents the results of satellite image classification and the results from land 

use/cover change detection, and then discusses the effects of land use/cover changes on areas 

affected by landslides. It also discusses the relation of some landslide conditioning factors to 

landslide occurrences.  

4.1 Objective 1: Assess the effects of land use/cover change  

4.1.1 Land use/cover in 2005 

The results of image classification of 2005 indicated that the study area was dominated by 

agricultural land as a rural district where most of the inhabitants rely on growing crops or 

livestock keeping for their livelihood. The agricultural land occupying 411.67 Km
2
 comprises 

the rain fed arable lands, cropland with non-permanent (e.g., potatoes, wheat, vegetables, etc.) 

and permanent crops such as banana and tea plantations, and fallow fields as well. Tea 

plantations were classified separately from the agricultural land as they appeared as a kind of 

vegetated area in the satellite image. The classified land use/cover map (figure 4.1) shows the 

distribution of land use/cover in the district.  

                   Figure 4 1: Land use/cover in Nyabihu district 2005 

76.48% 

0.01% 

2.22% 

13.67% 

5.25% 

2.05% 

0.32% 

Land use/cover in 2005 

Agricultural
land

Bare land

Built-up

Forest

Grassland

Tea
plantation
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Grasslands include the pasture lands and other uncultivable land reserved for a specific 

purpose. Built-up comprises the single residential houses spread over the study area, the 

factories, roads, and other basic infrastructures such as schools, churches, health centers, etc. 

Bare land occupying less space comprises the unused spaces, rocky areas and cleared areas. 

4.1.2 Land use/cover in 2015 

Despite changes that occurred in land use/cover from 2005, agricultural land in 2015 was still 

predominant, followed by forest (figure 4.2). All together, they occupied 85.83% of the area 

covered by all land uses/covers in the study area (table 4.1).  

             

              Figure 4 2: land use/cover in Nyabihu district 2015 

            Source: Analysis, (2019) 

The table 4.1 presents the size of the area occupied by each land use/cover type. 
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        Table 4 1: Size of each land use/cover category 

  Land 

use/cover 

2005 2015 % of 

change 

 

Area (Km
2
) Percentage 

(%) 

Area (Km
2
) Percentage 

(%) 

Agricultural 

land 

411.69 76.48 377.23 70.08 -6.4 

Forest 73.59 13.67 84.80 15.75 2.08 

Grassland 28.26 5.25 46.03 8.55 3.33 

Built-up 11.95 2.22 13.61 2.53 0.31 

Tea plantation 11.04 2.05 13.15 2.44 0.39 

water 1.71 0.32 2.63 0.49 0.17 

Bare land 0.08 0.01 0.88 0.16 0.15 

TOTAL 538.32 100.00 538.31 100.00  

      Source: Analysis, (2019)  

 

4.1.3 Land use/cover change from 2005 to 2015 

The study area has undergone various changes in land use/cover between 2005 and 2015. The 

agricultural land has been taken away by other land uses/covers such as forest, grassland and 

built-up areas. The calculated percentages for land use/cover classes as presented in table 4.1 

show changes that occurred in land use/cover from 2005 to 2015. The agricultural land 

decreased by  6.4% in this period, while forest, bare land, built-up, grassland, water, and tea 

plantation increased by 2.04%, 0.15%, 0.31%, 3.3%, 0.17% and 0.42% respectively in the 

period(figure 4.3, Table 4.1).  

The matrix of land use/cover change presented in table 4.2 below shows how much in square 

kilometers (km
2
) each land use/cover has increased or decreased between the years 2005 and 

2015. 
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        Table 4 2: Land use/cover change matrix 

 

LULC classes 

Land use/cover 2015 (area in Km
2
) Total 

area 

Agriculture Bareland Built-up Forest Grassland Tea 
plantation 

Water   

L
a

n
d

 u
s

e
/c

o
v

e
r 

2
0
0
5

( 
K

m
2
) Agriculture 362.1195 0.1980 10.9300 16.8089 17.8649 2.5734 1.1915 411.69 

Bareland 0.0092 0.0028 0.0004 0.0273 0.0202 0.0172 0.0001 0.0772 

Built-up 9.0412 0.0105 2.2301 0.4304 0.1534 0.0647 0.0170 11.947 

Forest 4.4268 0.1424 0.2808 64.4483 3.7750 0.4862 0.0354 73.595 

Grassland 0.4381 0.4709 0.0945 2.8881 24.1967 0.1724 0.0004 28.261 

Tea 
plantation 

0.9120 0.0506 0.0724 0.1575 0.0180 9.8312  11.042 

Water 0.2835   0.0008 0.0352 0.0012   1.3857 1.7064 

  Total area  377.2303  0.8752  13.6089 84.7957 46.0296 13.1450 2.6302 538.31 

    Source: analysis, (2019) 

The diagonal in orange color shows the area in square kilometer that has not changed for each 

land use/cover. As it is presented in table 4.2, for example, the agricultural land decreased 

from 411.69 Km
2 

(76.47%) in 2005 to 377.23 Km
2
 (70.07%) in 2015, while 362.1195 Km

2
 of 

agricultural land remained unchanged between 2005 and 2015. Thus, between 2005 and 2015, 

0.198Km
2
 of agricultural land changed to bareland, and 10.93Km

2
 of agricultural land 

changed to built-up, etc. On the other hand, the forest increased from 73.595 Km
2
 in 2005 to 

84.80 Km
2
 in 2015 whereas 64.4483 Km

2
 of forest remained unchanged in this period. It is 

seen that the agricultural land was mainly converted to grassland (17.86 km
2
), forest 

(16.80km
2
) and built-up (10.93 km

2
). 

The remarkable increase of forest and grassland (which is mostly the pasture land) was due to 

the measures that were taken by the government to reforest a large area of Gishwati reserved 

forest. Reforestation efforts increased the forest from about 600 hectares in 2002 to 886 

hectares in period between 2005 and 2008, which further increased up to 1,484 hectares 

between 2009 and 2010 (Kisioh, 2015).This forest was previously deforested by human 

encroachment through clearing of the forest for small-scale farming, large-scale cattle 

ranching projects and cattle grazing within the forest as well as the resettlement of returnees 

and internally displaced people in the aftermath of the genocide of 1994 (Kisioh, 2015).  
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Likewise, built-up increased from 11.95 Km
2
 in 2005 to 13.60 Km

2
 in 2015. The increase of 

built-up was undoubtedly due to the population growth which definitely implies the 

construction of new infrastructures including shelters amongst others. 

       

        Figure 4 3: Land use/cover change and annual rate of change from 2005 to 2015 

      Source: Analysis, 2019 

4.1.4 Land use/cover change and landslides in Nyabihu district 

The produced landslide shapefiles were overlaid with the land use/cover of Nyabihu district in 

2005 and 2015 (figure 4.4). The results indicated the occurrence of many landslides in 2015 

compared to those occurred in 2005. It was seen that most of the landslides occurred in 

agricultural land. For instance, in 2005, almost all landslides (7 out of 8, representing 87.5% 

of the total number of landslides) were located in agricultural land while only one landslide 

(representing 12.5% of the total number of landslides) occurred in forest cover. Similarly, in 

2015, the agricultural land experienced 27 landslides, while grassland, built-up, and forest 

experienced 4, 1 and 2 landslides respectively. This implies that agriculture land is mostly 

affected by landslides compared to other land uses/covers; possibly due to depletion of natural 

vegetation.  
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Land use/cover changes have an influence on slope failures that lead to landslides (Chen & 

Huang, 2012; Mugagga et al., 2012), due to inappropriate land coverage for holding the soils 

firmly. More often, changes in land use/cover are associated with some factors like 

undercutting the slope, vegetation removal and change of water flow directions which all 

weaken the soil capacity of absorbing water thereby causing landslides. It was seen that land 

use/cover changes mostly on slopes contribute more on landslide occurrences (Karsli et al., 

2009; Reichenbach et al., 2014). The changes observed in the study area mainly refer to the 

decrease of agriculture land. Yet, the agriculture remains the main source of subsistence for 

the majority people in Nyabihu district. Also, the agricultural produce from this district feeds 

other regions countrywide including Kigali city.  

The decline of agricultural land may lead to improper agricultural practices like cultivation of 

unsuitable slopes as the farmers would be interested in producing more yield while violating 

the soil protection measures, and hence exposing soils to erosion and landslides as well. With 

the same reasoning, the diminution of agricultural land (cropland) while the population 

increases, explains the pressure exerted on remaining scarce cropland, and hence inducing 

inappropriate agricultural practices in one way or another. According to (Gurung et al., 2013), 

inappropriate agricultural practices have been cited as being among the factors of landslide 

occurrences, which might be the case for Nyabihu district based on the obtained results. It was 

also noticed by Knapen et al., (2006) that the slope instability can be caused by cultivation on 

unsuitable steep slopes due to population growth pressure. The cultivation on steep slopes 

increases the chances to landslide occurrences when it is done without proper protection 

measures(Wasowski et al., 2010, as cited in Mugagga et al., 2012). 

The study area has experienced a greater number of landslides in agricultural land (cropland) 

than other land uses/covers as the cropland in the area is mostly characterized by short-term 

crops (e.g. potatoes, beans, carrots, etc.) having roots with limited penetration in the depth of 

soil, while the progression of plant roots in the soil depth could increase the slope stability 
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(Noroozi et al., 2017). Furthermore, based on the argument that trees or woody vegetation 

provide the slope stability (MacNeil et al., 2001; Reichenbach et al., 2014), it confirms the 

prominent landslide occurrences in agricultural land since growing crops usually involves the 

removal of trees or vegetation for soil preparation.  

The occurrence of landslides in cropland can be also attributed to other factors such as the 

absence of radical terraces and appropriate rainwater channels on steep slopes. This was also 

revealed  by the obtained results which indicated that almost all landslides occurred in 

agricultural land were on steeper slopes, while the agricultural land on gentle slopes 

experienced few landslides, confirming the relation of land use/cover and slope gradient in 

inducing landslides.  

    Figure 4 4: Land use/cover and landslides; 2005 and 2015 

   Source: analysis, (2019)  

Figure 4.5a shows the agricultural practices on steep slopes, and figure 4.5b shows the 

landslide occurred at the bottom edge of the agricultural land on steep slope area. 

 2015 2005 
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     Figure 4 5: Agriculture on steep slopes (a), Landslide at the bottom edge of a field (b) 

     Source: Field work, 2019 

 

4.2 Relationship between landslide conditioning factors and landslide occurrences 

4.2.1 Slope angle and landslides in Nyabihu district 

The slope angle has been noted to be connected with landslide occurrences in highlands 

(Jacobs et al., 2016; Skilodimou et al., 2018), though the influencing slope angle class may 

vary from region to region. In order to evaluate the occurrence of landslides in relation to the 

slope angle, a slope map was generated and overlaid with landslide occurrences in 2005 and 

2015 (figure 4.6). Table 4.3 shows the number of landslides in relation to the slope angles. 

The results revealed that the landslides generally occurred in medium slope ranging between 

13.45-19.29° with 3 landslides in 2005, and 13 landslides identified in 2015.  This might 

explain how the cultivation conducted on high steep slopes increase the instability of the 

slope.  

  

  

a b 
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  Figure 4 6: Slope and landslides; 2005 and 2015 

     Source: Analysis, (2019) 

Generally, results showed that landslides often occurred in slope angles between 13.45 and 

25.36°, while few landslides occurred in the highest slope angle of above 25.37°. In their 

study, (Jacobs et al., 2016) found that more landslides occurred in slope angles 25-30°, while 

at the same time the highest slope angles of above 30° experienced fewer landslides. It 

implies that chances of landslide occurrences do not necessary evolve with the increase in 

slope angles, though they are much connected with the steepness of the terrain. Donnarumma 

et al., (2013) argued that despite the relationship between the steepness and landslides, the 

high slopes do not always produce landslides. The idea was that sometimes the high slopes 

are comprised of stony layers that are not subjected to the slope failure. Furthermore, less 

cultivation at these slopes might contribute less to slope failure. 

 

 

2005 2015 
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4.2.2 Slope aspect and landslides 

 In the assessment of the relationship between slope aspect and landslide occurrences, an aster 

DEM obtained from USGS was used by applying spatial analyst tools in ArcMap 

environment to derive slope aspect information. The derived information were classified into 

9 classes named; Flat, North, Northeast, East, Southeast, South, Southwest, West, and 

Northwest. In this study area, most of the landslides occurred on south facing slopes (figure 

4.7), which may explain that the south facing slopes experience the medium slope subjected 

to easy failure or where the prominent soil depth is the class very susceptible to landslides, 

otherwise the cultivation might be more on south facing slopes.  

In a similar study, Capitani et al., (2014) noticed that shadow, coldness, and humidity which 

differ from one slope aspect to another may explain why some slope aspects are more 

subjected to landslides than others. Yet, the difference in wetness from slope aspect to another 

is an additional factor to take into consideration when analyzing the influence of slope aspect 

to the landslide occurrences.  

Due to the hilly topography of the study area, it happens that the sunshine lasts longer on 

particular hillsides than on their opposite sides which may explain how some slope aspects are 

more exposed to a prolonged wetness while others are dry, and hence the disparity of 

landslide occurrences. It is what has been noticed by Caiyan et al., (2006) that the slope 

exposed to enough sunshine and hence dry, often experiences the low vegetation cover which 

can lead it to easy degradation by rainfall. 
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     Figure 4 7: Slope aspect and landslides; 2005 and 2015 

      Source: Analysis, (2019) 

Furthermore, some of the microclimatic factors (e.g. exposure to sunlight, windward and 

leeward conditions, rainfall intensity, soil moisture and weathering) controlling the properties 

of the slope are influenced by the slope aspect (Cevik & Topal, 2003; Tseng et al., 2015). The 

results of this study showed a clear relation of landslide occurrences to south facing slopes (S, 

SE, and SW) (figure 4.7). 

4.2.3 Soil depth and landslide occurrences 

From the overlay result of soil depth and landslides identified in 2015,  it was clear that the 

majority of landslides (28 landslides) occurred on soil depth ranging between 0.5- 1m depth, 

while 5 landslides occurred on soil depth greater than 1m depth (>1m). No landslide occurred 

on soil depth less than 0.5m depth (<0.5m) (figure 4.8). Similarly, 7 landslides (among the 8 

landslides) identified in 2005 occurred on soil depth ranging between 0.5 and 1m depth. Only 

one landslide occurred on soil depth greater than 1m (>1m) (figure 4.8). While researches 

proved that slope failures mostly occur on soil depth between 1.2m and 1.5m where the 

strength excreted by roots does not often reach (Bizimana & Sönmez, 2015), landslides in 

2005 2015 
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Nyabihu district in both 2005 and 2015 occurred on soil depth ranging between 0.1m and 1m. 

Table 4.3 shows the landslide occurrences per soil depth class.  

   Figure 4 8: Soil depth and landslides; 2005 and 2015  

     Source: Analysis, (2019) 

Sharma et al., (2010) argued that shallow soils are more susceptible to landslides since they 

are unstable compared to deep soils which are stable. This is based on the idea that the soil 

capacity to absorb the moisture increases with the increase in soil depth and hence reducing 

the runoff rate. Similarly, (Fan et al., 2016) noted that landslide activity increases in shallow 

soil depth than it does in deep soil depth.  In contrast, results of this study proved that the deep 

soils experienced more landslides than shallow soils, though the study area comprises clay, 

and volcanic soils that are actually susceptible to landslides on steep slope areas. 

 

 

 

2015  2005 
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4.2.4 Distance to the roads and landslides 

In this study, landslide occurrences in relation to the distance from the roads were analyzed by 

applying proximity analysis using GIS. In 2015, only one landslide was identified within a 

buffer zone of 25m, while other 33 landslides were located outside of the 50m buffer zone 

(figure 4.9). 

Similarly, all landslides identified in 2005 were located outside the buffer zone of 50 m from 

the road (figure 4.9). With these results, it can be noted that the roads in Nyabihu district did 

not greatly induce slope failures as most of the landslides occurred at more than 50m from the 

road.  

It was proven in the literature that landslides have been occurring near roads where vegetation 

cover has been cleared (Moghaddas & Ghafoori, 2007). In many cases, roads make slopes 

steeper and even direct the drainage channels to steep locations, all of which increase the 

chance to landslide occurrences (Das et al., 2010 cited in Hosseini et al., 2011). 

The construction of roads along steep slopes which usually involves cutting slopes is among 

other causes of ground failure that ends up with causing landslides along roadside (Nayak, 

2010). Yet, the vibration caused by heavy machine during road construction through 

excavation, and the force exerted by the movement of heavy loaded vehicles (e.g., trucks) 

cause cracks in the soils. It is believed that such vibration extends some distance from the 

road. Then, once the cracked soils absorb rainfall water that they are unable to hold, it finally 

leads to landslides. Similarly, the study concluded that the construction of roads in 

mountainous areas increases the chances of landslides (Nepal et al., 2019), as they usually 

result in inadequate drainage systems and mechanical destabilization of the steeper slopes 

through undercutting and overloading (Brenning et al., 2015). 

On the other hand, the roadside cuts have been noted by Hearn et al., (2008) to be often 

exposed to higher wet ground water, perched water levels in soils and weathered rock masses, 
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all of which are susceptible to landslides. Further, the blockage to roadside drains also 

facilitates the slope failures.   

     Figure 4 9: Distance to road and landslides; 2005 and 2015 

        Source: Analysis, (2019) 

Figure 4.10a shows the road that runs through the steep slopes and figure 4.10b shows the 

landslide on the roadside which might have also been influenced by constructions on the steep 

slope area. 

    Figure 4 10: Road on steep slope area (a), Landslide on roadside (b) 

     Source: Field work, 2019 

2005 2015 

a b 
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Although the above literature highlight the relation between road-based activities and the 

slope failures, the distance to road did not prove to be the eminent causative factor of 

landslides in this study area.  

                   Table 4 3: Distribution of landslides in each landslide causative factor 

 Number of landslides identified 

Causative factor Class 2005 2015 
Land use/cover Agricultural land 7 27 

Bare land 0 0 
Built-up 0 1 
Forest 1 2 
Grassland 0 4 
Tea plantation 0 0 
Water 0 0 

Slope angle (degrees) 0-6.93 2 5 
6.94-13.44 1 8 
13.45-19.29 2 11 
19.3-25.36 3 8 
25.37-55.26 0 2 

Slope Aspect Flat 0 0 
N 0 4 
NE 0 3 
E 1 7 
SE 1 6 
S 4 10 
SW 2 2 
W 0 1 
NW 0 1 

Soil depth (m) <0.5 0 0 
0.5-1.0 7 28 
>1.0 1 6 

Distance to road (m) 0-50 1 1 
50-100 1 1 
100-150 0 1 
150-200 0 1 
200-250 0 0 
250-300 2 2 
>300 4 28 

Precipitation (mm) 1095-1128  3 
1128-1161  3 
1161-1195  0 
1195-1228  1 
1228-1261  2 
1261-1294  8 
1294-1328  14 
1328-1361  3 
1361-1394  0 

               Source: Analysis, 2019 
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4.3 Objective 2: Evaluate rainfall variability and its implications on the occurrence of 

landslides.   

4.3.1 Rainfall distribution and landslide occurrences in Nyabihu district 

The spatial rainfall distribution in the study area was determined based on the precipitation 

recorded in 2015 for five rainfall stations as shown in figure 4.11b. This was to reflect on the 

2015 Landsat satellite image presented in objective two. With five rainfall stations located 

within Nyabihu district, IDW method in ArcMap 10.5 was used to interpolate the spatial 

distribution of rainfall throughout the study area (figure 4.11b), and DEM served to generate 

an altitude map (figure 4.11a). 

    Figure 4 11: Altitude map (a), spatial rainfall distribution in Nyabihu district (b) 

       Source: Analysis, 2019 

Then, landslides and precipitation layers were overlaid to assess the relation between 

precipitation amount and landslide occurrences (figure 4.11b). The results revealed that about 

41.2% and 23.5% of the landslides occurred in the areas having high annual precipitation 

amount that ranges from 1294.33mm to 1327.56 mm and from 1261.11mm to 1294.33mm 

respectively. This reflects on results obtained by Lazzari and Piccarreta (2018), that heavy 

a b 
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rainfall exacerbated the occurrence of landslides in their study area (Basilicata, Southern 

Italy). However, it is not only the heavy rainfall that causes landslides but also the low 

intensity rainfall prolonging for some days was noted to be the cause of landslide occurrences 

as well (Bizimana & Sönmez, 2015; Teja et al., 2019). Thus, this study also noticed the 

dominant occurrence of landslides in areas with high precipitation. Yet, this study did not 

analyze the effects of prolonged rainy days in triggering landslides due to the lack of efficient 

historical and timely landslide data. Nevertheless, the study established the relation between 

rainfall and landslide occurrences using the identified landslides on annual basis.  

From the observation of the researcher, the high annual precipitations are spread on the steep 

slope areas. This can show the relation of precipitation amount to the slope gradient, 

confirming the usually experienced high rainfall in hilly regions all over the world (Alijani, 

2008; Saeidabadi et al., 2016). Nevertheless, the analysis of rainfall in Nyabihu district was 

carried out separately for each of the rainfall stations located in the study area. Thus, the 

length of data record was not similar to all rainfall stations. Only one rainfall station 

(Bigogwe) had long record of rainfall data from 1997 to 2017, other four rainfall stations 

(Kabatwa, Rwankeri, Rambura, and Rugera) had rainfall data for a short period from 2014 to 

2017(table4.4).  

          Table 4 4: Characteristics of rainfall for individual stations in the study area 

Rainfall 

station 

Period of 

data available 

Mean annual 

rainfall (mm) 
% of missing values 

Bigogwe 1997-2017 1165 no missing value 

Kabatwa 2014-2017 1122 no missing value 

Rwankeri 2014-2017 1045 no missing value 

Rambura 2014-2017 1301 no missing value 

Rugera 2014-2017 1473 no missing value 

                  Source: analysis, 2019 

Hence, rainfall trend analysis was carried out only for Bigogwe rainfall station that had a long 

record of rainfall data (21 years).  Line graphs were used to plot annual rainfall for other four 

rainfall stations with four years period of data record (Kabatwa, Rwankeri, Rambura, and 
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Rugera) in order to determine the relationship between annual rainfall and landslides 

identified on annual basis in that period.  

 

4.3.2 Rainfall trends and variability in Nyabihu district 

The rainfall trends were determined using Mann Kendall test together with the Sen‘s slope 

estimator (Hussain et al., 2015). As the number of data values for Bigogwe rainfall station 

was greater than 10 (21 years of data record length), Z statistic and Qi statistic were used to 

assess the significance of rainfall trends at this station over the period between 1997 and 

2017. However some researchers used Mann Kendall test statistic together with the p-value 

(Karmeshu, 2012; Chandubhai et al., 2017; Panda & Sahu, 2019) to assess the significance of 

the trend. Therefore, this study considered both sides in deciding whether the trend is 

significant or not.  

4.3.2.1 Annual rainfall trend -Bigogwe station 

The calculated Mann Kendall test Z and Sen‘s slope (Qi ) showed a downward (decreasing) 

annual rainfall trend  at Bigogwe station due to the negative values of  both Z and Qi statistics 

(table 4.5). However, it can be said that although there is a decreasing rainfall trend (Qi= -

12.75), it is not statistically significant at 5% level based on the p-value which is greater than 

0.05.   

  Table 4 5: Mann Kendall test statistics for rainfall trends, Bigogwe station from 1997-2017 

Rainy Months Z S P-value Sen’s slope 

(Qi) 

March -0.82 -28 0.42 -1 

April -0.15 -6 0.88 -0.87 

May -1.78 -60 0.07 -2.13 

October -0.27 -10 0.79 -0.62 

November 0.09 4 0.93 0.15 

December -2.26 -76 0.02 -4.23 

Long rainy season -0.57 -20 0.57 -3.75 

Short rainy season -0.48 -17 0.63 -3.19 

Annual -1.69 -57 0.09 -12.75 

                           Source: Analysis, 2019 
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The added trend line in the annual rainfall trend (figure 4.12) indicates the general direction of 

downward rainfall trend from 1997 to 2017. It is a decreasing trend line implying that over the 

past years, there was much rainfall in comparison with the recent period. Bigogwe station 

recorded extreme rainfall in 2006 with annual precipitation reaching 1385mm. Thereafter, the 

rainfall instantly dropped to 1055mm in 2008, but later increased again to the high annual 

rainfall of 1359mm in 2010.  From 2010, the rainfall kept decreasing and reached 866mm in 

2013. The rainfall increased again from 2013 to reach the annual rainfall of 1228mm in 2016, 

and then promptly dropped to the low rainfall of 649mm in 2017 ( figure 4.12). 

                      Figure 4 12: Annual rainfall trend for Bigogwe rainfall station from 1997-2017 

                     Source: analysis, 2019 

On the other hand, the study analyzed the relationship between rainfall and landslides 

identified in area close to Bigogwe rainfall station. Figure 4.13 shows the variation of 

landslides identified in area close to Bigogwe station from 2005 to 2017. While the rainfall 

increased between 2005 and 2006 and then decreased from 2006 to 2009, there was no 

landslide identified in area close to Bigogwe station in that period from 2005 to 2012.  Also, 

the rainfall decreased from 2010 until 2012 while landslide occurrences increased in that 

period. Yet, the decrease of rainfall corresponded to the decline of landslide occurrences 

between 2012 and 2013. Both rainfall and landslide occurrences increased in period from 

2013 to 2014 and declined from 2014 to 2015.  But, the rainfall increased between 2015 and 
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2016 while the landslide occurrences decreased in this period, though all of them decreased 

again from 2016 to 2017. With all this, it can be said that there is no permanent defined 

relation of rainfall variation with the occurrence of landslides in the study area from 2005 to 

2017; the rainfall variation does not always correspond to the variation of landslide 

occurrences whether positively or negatively.  

In other words, there is no permanent positive or negative relationship that evolves constantly 

between rainfall and landslide occurrences over a period of time. It should be said that high 

rainfall triggers landslides depending on the presence of other causative factors for that 

particular moment. 

                          Figure 4 13: Landslides identified in area close to Bigogwe rainfall station 

                               Source: analysis, 2019 

4.3.2.2 Annual rainfall -Kabatwa station 

In four years from 2014 to 2017, the annual rainfall recorded at Kabatwa rainfall station 

increased from 1056mm in 2014 to 1344mm in 2015 (figure 4.14). Then, the rainfall 

decreased to 1335mm in 2016 and further dropped to the low rainfall of 595mm in 2017. 

However, the data points are too few to establish any long term trends.  

The area close to Kabatwa rainfall station did not experience landslides. This area is actually 

characterized by gentle slopes that are not very susceptible to slope instability. 
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                     Figure 4 14: Annual rainfall at Kabatwa station from 2014 to 2017 

                          Source: analysis, 2019 

4.3.2.3 Annual rainfall -Rwankeri station  

Figure 4.15 shows the annual rainfall at Rwankeri station. Annual rainfall increased from 

1115mm in 2014 to 1281mm in 2016, and then decreased to 560mm in 2017. 

 

                 Figure 4 15: Annual rainfall at Rwankeri station from 2014 to 2017 

                     Source: analysis, 2019 

The landslides identified in area close to Rwankeri station showed a positive relationship with 

the rainfall in period between 2014 and 2017. Figure 4.16 shows the landslides occurred 

between 2014 and 2017 in surrounding area close to Rwankeri rainfall station. Both rainfall 

and landslide occurrences increased from 2014 to 2016 and then declined in 2017.  
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                              Figure 4 16: Landslides identified in area close to Rwankeri station 

                              Source: analysis, 2019 

4.3.2.4 Annual rainfall -Rambura station  

The following figure 4.17 shows the annual rainfall from 2014 to 2017 at Rambura rainfall 

station. The rainfall has increased from 1222mm in 2014 to 1832mm in 2016, but later it 

dramatically dropped to 757mm in 2017.  

                          Figure 4 17: Annual rainfall at Rambura station from 2014 to 2017 

                               Source: analysis, 2019 

In the area close to Rambura station, there was no defined relationship between identified 

landslides and rainfall. The rainfall increased from 2014 to 2016 and decreased in 2017 while 

the landslides decreased between 2014 and 2015 and then increased from 2015 until 2017 

(figure 4.18). 
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                                  Figure 4 18: Landslides identified in area close to Rambura station 

                                  Source: analysis, 2019 

4.3.2.5 Annual rainfall-Rugera station  

In period between 2014 and 2017, Rugera station recorded high annual rainfall compared to 

other rainfall stations. The high annual rainfall of 2153mm was received in 2016 and low 

annual rainfall of 829 in 2017. Figure 4.19 shows the annual rainfall at Rugera station. 

                        Figure 4 19: Annual rainfall at Rugera station from 2014 to 2017 

                        Source: analysis, 2019 

In area around Rugera rainfall station, the identified landslides showed an inverse relationship 

with the rainfall variation. The rainfall decreased from 2014 to 2015 while landslide 

occurrences increased in that period. The rainfall increased from 2015 to 2016 with a decline 

of landslide occurrences in the same period, and then rainfall decreased again in 2017 while 

landslides increased. Figure 4.20 shows landslides identified in area close to Rugera rainfall 

station.    
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                               Figure 4 20: Landslides identified in area close to Rugera station 

                               Source: analysis, 2019 

 

In general, all rainfall stations in the study area received increasing annual precipitations in 

period from 2014 to 2016 and remarkable low precipitations in year 2017. However, the 

relationship of rainfall with landslides identified in area close to each of the rainfall stations 

showed a particularity from one station to another. This revealed that there is no defined 

relationship (either positive or negative) to be assigned between rainfall and landslide 

occurrences over the period mentioned in the study area. Yet, it does not mean that the 

influence of high rainfall in triggering landslides is meaningless, instead it depends also on the 

influence of other causative factors from one area to another in that particular period of time. 

Generally from 2005 to 2017, the landslides occurred in area surrounded by four rainfall 

stations (Rwankeri, Rugera, Rambura, and Bigogwe) which are actually not located on high 

altitude compared to Kabatwa station. The dominance in landslide occurrences around those 

four rainfall stations may not refer to the altitude differences; instead it can be related to the 

amount of rainfall received in the area and steepness of slope together with improper 

cultivation practices on steep slopes. The area around Kabatwa station is characterized by 

gentle slopes which may contribute less on slope instability. Table 4.6 shows the landslides 

identified in area close to each of the rainfall stations from 2005 to 2017.  
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       Table 4 6: Landslides identified in area close to each of the rainfall stations  

 Number of landslides identified in area close to each of the 

rainfall stations 
Total 

Year Bigogwe Kabatwa Rambura Rwankeri Rugera  

2005 0 0 2 0 6 8 

2006 0 0 4 0 5 9 

2007 0 0 5 0 1 6 

2008 0 0 4 0 3 7 

2009 0 0 3 0 2 5 

2010 0 0 6 0 3 9 

2011 8 0 3 4 6 21 

2012 11 0 6 0 10 27 

2013 6 0 15 0 4 25 

2014 8 0 11 3 8 30 

2015 7 0 5 8 14 34 

2016 3 0 17 12 11 43 

2017 1 0 21 2 12 36 

Total 44 0 102 29 85  

         Source: analysis, 2019 

4.3.2.6 Monthly rainfall trends-Bigogwe station 

The rainfall trends on a monthly basis were determined individually for each of the rainy 

months using the Mann Kendall test Z and Sen‘s slope (Qi). The results indicated downward 

monthly rainfall trends in most of the months, while only one month showed upward rainfall 

trend. Five months (which are March, April, May, October, and December) had negative Z 

values which indicate decreasing monthly rainfall trends, and one rainy month (November) 

had positive value of Z statistic which indicates upward (increasing) monthly rainfall trend 

(figure 4.21a).  

Moreover, the calculated Sen‘s slope (Qi) for each individual rainy month indicated that all 

five rainy months (March, April, May, October, and December) had negative Qi values which 

shows decreasing monthly rainfall trends, and only one rainy month (November) showed a 

positive Qi value, indicating increasing monthly rainfall trend(figure 4.21b). 

As the five rainy months (March, April, May, October, and December) showed negative 

values for both Z statistics and Sen‘s slope (Qi), it can be concluded that they indicated 

significant decreasing monthly rainfall trends while one month (November) presented a 
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significant increasing rainfall trend. However, based on p-value, it should be noted that only 

one month of December showed significant decreasing rainfall trend as it had p-value less 

than 0.05 and negative value of Z statistics (table 4.5). 

 Figure 4 21: Mann Kendall for monthly trend analysis-Bigogwe; (a) Z statistic, (b) Qi statistic 

 Source: analysis, 2019 

        Figure 4 22: Monthly rainfall trends – Bigogwe station from 1997-2017 

        Source: Analysis, 2019 

From 1997 to 2003, all rainy months (March, April, May, October, November, and 

December) experienced much rainfall varying between 100mm and 217mm. The similar 

amount of high rainfall was observed again in 2006 and 2016. Thus, at least three months 

among six rainy months could receive a small amount of monthly rainfall oscillating between 

17mm and 100mm in years 2005, 2007-2009, 2011, 2013, 2015, and 2017 (figure 4.22).  Yet, 

0

50

100

150

200

250

300

350

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

M
o

n
th

ly
 r

ai
n

fa
ll 

(m
m

) 

Years 

Monthly rainfall- Bigogwe station (1997-2017) 

March April May October November December

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

March April May October November December

S
e

n
's

 s
lo

p
e

 

Rainy months 

Sen's slope- Bigogwe rainfall station 

-2.5

-2

-1.5

-1

-0.5

0

0.5

March April May October November December

Z
 s

ta
ti

st
ic

 

Rainy months 

Z statistic-Bigogwe rainfall station 

a b 



62 
 

the highest monthly precipitation of 304mm was observed in November of 2011. Unlike other 

years in mentioned period, the year 2017 was generally characterized by low rainfall with 

monthly precipitations varying between 17mm and 93mm in five rainy months (March, May, 

October, November, and December) and only one month of April received a precipitation 

reaching 146mm. 

With regard to the landslides, it was not possible to relate the individual monthly rainfall with 

landslide occurrences because this study used only the annual-based landslide data, though it 

is commonly known that the landslides in Rwanda occur in rainy months.  

4.3.2.7 Seasonal rainfall trends- Bigogwe station 

From the rainfall records of Bigogwe rainfall station, the results of Mann Kendall test 

indicated that two rainy seasons (long and short rainy seasons) had negative values of Z 

statistic, and hence showing the decreasing seasonal rainfall trends (figure 4.23a).  

Similarly, the calculated Sen‘s slope showed negative values for both two rainy seasons 

which also indicated decreasing seasonal rainfall trends (figure 4.23b). Since both rainy 

seasons presented negative values for both Z and Qi statistics, it can be noted that rainy 

seasons (long short rainy season, and short rainy season,) showed significant decreasing 

seasonal rainfall trends from 1997 to 2017.  Yet, the p-values calculated were greater than 

0.05 (table4.5), indicating that seasonal rainfall trends were not statistically significant.  

 Figure 4 23: Mann Kendall test: Z and S statistics, and Sens‘s slope  

 Source: analysis, 2019 
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From the results, it was noticed that the area did not have remarkable differences in the 

received rainfall amount between long rainy season (March-April-May) and short rainy 

season (October-November-December). In fact, the short rainfall season could even 

experience much rainfall than long rainfall season in some periods such as from 1998 to 2002, 

and from 2008 to 2009. Yet, the more extreme rainfall amount was observed in a short rainy 

season of 2014 with seasonal rainfall amount reaching 547mm (figure 4.24). The overall 

seasonal rainfall for both rainy seasons has been oscillating between 201mm and 547mm from 

1997 to 2017.  

           Figure 4 24: Seasonal rainfall- Bigogwe station from 1997-2017 

           Source: analysis, 2019 
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rainy season (October-November-December) experienced precipitations oscillating between 
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(figure 4.25).  
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                        Figure 4 25: Seasonal rainfall- Kabatwa station from 2014-2017 

                     Source: analysis, 2019 

4.3.2.9 Seasonal rainfall -Rwankeri station 

Rwankeri station received precipitations varying between 184mm and 621mm in long rainy 

season (March-May-April) and between 267mm and 446mm in short rainy season (October-

November-December) from 2014 to 2017 (figure 4.26). 

                            Figure 4 26: Seasonal rainfall- Rwankeri station from 2014-2017 

                            Source: analysis, 2019 

 

 

 

 

 

0

200

400

600

800

2014 2015 2016 2017

Se
as

o
n

al
 r

ai
n

fa
ll 

(m
m

) 

Years 

Seasonal rainfall-Rwankeri (2014-2017) 

Long rainy season Short rainy season

0

200

400

600

800

2014 2015 2016 2017
Se

as
o

n
al

 r
ai

n
fa

ll 
(m

m
) 

Years 

Seasonal rainfall-Kabatwa (2014-2017) 

Long rainy season Short rainy season



65 
 

4.3.2.10 Seasonal rainfall -Rambura station  

In period from 2014 to 2017, the rainfall received at Rambura station has been varying 

between 397mm and 893mm in long rainy season (March-April-May) and between 193mm 

and 612mm in short rainy season (October-November-December). Figure 4.27 shows 

seasonal rainfall at Rambura station. 

                              Figure 4 27: Seasonal rainfall- Rambura station from 2014-2017 

                              Source: analysis, 2019 

4.3.2.11 Seasonal rainfall -Rugera station  

The rainfall in long rainy season (March-April-May) has been varying between 234mm and 

1184mm while the short rainy season (October-November-December) received rainfall 

oscillating between 389mm and 415mm from 2014 to 2017 (figure 4.28).  

                                     Figure 4 28: Seasonal rainfall- Rugera station from 2014 
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It has been remarked that the landslides in Rwanda occur during both the long and short rainy 

seasons due to high and persistent rainfall, and hence greatly destabilizing the soil. Yet, this 

study did not analyze the relation between seasonal rainfall and landslide occurrences because 

landslide data were only collected on annual basis. 
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4.4 Objective3: Predict the occurrence of landslides  

4.4.1 Model fitting using backward stepwise (Wald) logistic regression method 

After identifying classes for all landslide causative factors, the percentages of landslides per 

class of causative factor were calculated (figures 4.29&4.30). 

Figure 4 29: Percentages of landslides for each class of variable: Slope gradient (a), Soil depth 

(b), Land use/cover (c), Distance to road (d), and Slope aspect (e) 
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                          Figure 4 30: Percentage of landslides for each class of precipitation 

Using the logistic regression model, the relation of landslide causative factors to the 

occurrence of landslides was assessed. All landslide causative factors were subjected to the 

backward logistic regression technique in which the insignificant variables were eliminated 

step by step until the significant variables to the model remained as shown in the table 4.7. 

              Table 4 7: Variables in logistic regression model equation 

Variables in the equation 

 B S.E. Wald df Sig. Exp(B) 

Step 

4
a
 

Land use/cover -1.346 0.375 12.897 1 0.000 0.260 

Slope Gradient 1.025 0.370 7.665 1 0.006 2.786 

Precipitation -0.985 0.285 11.965 1 0.001 0.373 

Constant 6.284 2.036 9.524 1 0.002 536.131 

a. Variable(s) entered on step 1: Land use/cover, Slope Gradient, Slope Aspect, Soil 

Depth, Distance to Road, Precipitation. 

           Source: Analysis, 2019 

Results showed that only 3 predictors (land use/cover, slope angle and precipitation) out of 6 

independent variables were retained in the model as significant predictors of the landslide 

occurrences in the study area.  The rest of the variables were excluded from the model 

explaining that slope aspect, soil depth, and distance to the road were all not significant 

predictors to the landslide occurrences.  
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From the table 4.7, the coefficients for land use/cover (LULC) and slope gradient (SG) 

formed the logistic regression model equation of which the generated linear combination (Z) 

was expressed as: 

             (    )        (  )        (  ) 

Where, LULC is the land use/cover, SG the slope angle, and PP the precipitation.  

For stepwise logistic regression, the literature insinuated that utilizing the significance level of 

0.5 as an entry and removal level when choosing the predictors to be included in the model 

may result in exclusion of important variables from the model (Sarkar et al., 2010). It is in this 

essence that this study admitted the strong recommendation of Hosmer & Lemeshow (2000) 

of using 0.15 as an entry level and 0.20 as removal level when selecting the important 

predictors to be included in the stepwise logistic regression model. Therefore, the three 

significance levels; 0.000 and 0.006 and 0.001 for land use/cover, slope gradient and 

precipitation respectively proved as influence of these variables to the landslide occurrence as 

these p-values are less than 0.15 (significance level). Other variables had p-values greater than 

0.20 (table 4.8), which is the reason why they were excluded from the model. 

                Table 4 8: Variables excluded from the model 

Variables not in the Equation 

 Score df Sig. 

Step 

2
a
 

Variables Distance to Road 0054 1 0.816 

 Overall Statistics 0.054 1 0.816 

Step 

3
b
 

Variables Slope Aspect 0.394 1 0.530 

Distance to Road 0.066 1 0.798 

Overall Statistics 0.453 2 0.797 

Step 

4
c
 

Variables Slope Aspect 0.238 1 0.626 

Soil Depth 2.325 1 0.127 

Distance to Road 0.253 1 0.615 

Overall Statistics 2.748 3 0.432 

a. Variable(s) removed on step 2: Distance to Road. 

b. Variable(s) removed on step 3: Slope Aspect. 

c. Variable(s) removed on step 4: Soil Depth. 

                   Source: Analysis, 2019 
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The significant influence of land use/cover to the occurrence of landslide was also noted by 

Chen et al.,(2019) in their study where they found a clear relation of land use/cover and 

landslide occurrence. They concluded that land use/cover change mainly emanating from the 

human engineering activities greatly increased the chance to landslide occurrence. However, 

results from this study revealed that most of the landslides occurred in agricultural land which 

explains its effects on slope instability in the study area. Generally, it should also be noted 

that the land use/cover can contribute more or less to landslide occurrences depending on the 

physical characteristic of the terrain together with the influence of conditioning factors or the 

prominent landslide triggering factor in that place.  

The negative coefficients of land use/cover and precipitation imply the negative relationship 

of these causative factors with the landslide occurrences, which may show that the change in 

land use/cover and rainfall could not necessarily increase the chances to landslide 

occurrences. Although it is certainly true that land use/cover changes contribute to the 

landslide occurrence (Galve et al., 2015; Meneses et al., 2019; P. Reichenbach et al., 2014), 

what needs to be noted is that the land use/cover in conjunction with other causative factors in 

place act together in increasing the chances of the occurrences, especially when the occasional 

triggering factor poses tremendous pressure to cause the instability of the slope. Hence, in this 

study, the land use/cover was proven by the model to be a significant landslide factor. 

The positive coefficient of slope gradient, on the other hand, implies a positive relationship of 

slope angle with landslide occurrence meaning that the probability of landslide occurrence 

slightly increases with the increase in steepness. It was noted in some studies that the increase 

in steepness of the slope usually increases the chances of its failures (Prasad, 2017), and hence 

leading to landslide occurrences. Shit et al., (2016) argued that the occurrence of landslides in 

higher slopes mostly originates from rocks with sparse or no vegetation cover which allows 

the easy instability of those slopes. However, it was noticed that sometimes the steepest 

slopes (highest slope angles) do not necessarily experience more landslides than the moderate 
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slopes (Donnarumma et al., 2013, Wang et al.,2016 ). It should therefore be noted that the 

probability of landslide occurrence increases with the increase in slope angle but with some 

exceptions.  

In many cases, more landslides occurred in medium class of slope angles depending on how 

every researcher classified the slope angles (Jacobs et al., 2016). In few or almost no cases, 

more landslides were identified in the highest class among the selected slope angle ranges. 

By inserting the generated linear combination (Z) into the equation (15), the final logistic 

regression equation to estimate the probability of landslide occurrence (P) was expressed as: 

  
 

    (                                 )
 

Hence,   
 

                 

This implies that the model predicts at almost 99% probability, landslides could occur due to 

land use/cover, slope angle and precipitation.  

On the other hand, by considering only the land use/cover (keeping other predictors constant), 

the probability of landslide occurrence could be; 

   
 

    (               )  
 

                 

This implies that the model could predict that at approximately 99.2%, landslides could occur 

due to land use/cover.  

Whereas, by considering the precipitation while holding other predictors constant, the 

probability of landslide occurrences could be; 

   
 

    (             )
 

 

         
        or 99.5% 

Hence, the probability of landslide occurrences initiated by land use/cover, slope angle and 

precipitation is not to be ignored or just taken worriless in terms of disaster or hazard 

management. Looking at the already assessed impacts of landslides in the study area along the 

past years (MIDIMAR, 2015), it should be noted that these modeled variables have to be 

particularly taken into consideration for the minimization of the likely landslide occurrences.  
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4.4.2  Correlation of causative factors with the landslides 

The study also analyzed the correlation between main predictor variables to the landslides. 

The purpose was to determine the influential extent of each variable on landslides (table 4.9).  

                            Table 4 9: Correlation of landslides and causative factors 

 Landslides 

Land use/cover Pearson Correlation -0.375
**

 

Sig. (2-tailed) 0.002 

Slope Gradient Pearson Correlation 0.280
*
 

Sig. (2-tailed) 0.021 

Precipitation Pearson Correlation -0.244
*
 

Sig. (2-tailed) 0.045 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

                        Source: Analysis, 2019 

In the analysis of the correlation between causative factors and landslides using Pearson 

correlation coefficient land use/cover, slope angle, and precipitation were all noted to be 

correlated to landslides (table 4.9). The land use/cover and precipitation were negatively 

correlated to landslides at 99% and 95% confidence levels respectively. However, their 

correlation to landslides was not that strong because their r coefficients (-0.375 and -0.244) 

respectively were weak. According to Taylor (1990), a strong correlation would be indicated 

by r coefficient that approaches ±1. On the other hand, the slope angle was positively 

correlated to landslides at 95% confidence level with a small r coefficient (0.280), implying a 

weak correlation between slope angle and landslides. 

The negative coefficient for land use/cover and precipitation would indicate the negative 

relationship between these causative factors and the landslides while the positive coefficient 

for the slope angle would indicate the positive relationship between the slope angle and the 

landslides. The negative correlation could actually imply the inverse relationship between 

high rainfall and landslide occurrences. However, it could be noted that some areas 
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experienced high rainfall with no landslides occurred while other areas received high rainfall 

together with more landslide occurrences depending on the influence of other causative 

factors. With all this, it should be said that the increase in rainfall amount does not always 

trigger more landslides.  

4.4.3 Logistic regression model assessment and validation 

4.4.3.1 Omnibus tests of model coefficients  

Backward Stepwise method starts with the inclusion of all variables in a model, and then 

eliminates predictors one by one based on the statistical significance of their coefficient 

values (table 4.10) until the important predictors are retained.  

                                     Table 4 10: Omnibus Tests of Model Coefficients 

Omnibus Tests of Model Coefficients 

 Chi-square df Sig. 

Step 

4
a
 

Step -2.519 1 0.112 

Block 35.700 3 0.000 

Model 35.700 3 0.000 

a. A negative Chi-squares value indicates that the Chi-squares 

value has decreased from the previous step. 

                            Source: Analysis, 2019 

From table 4.10, the resultant model chi-square was 35.700, and the p-values for test of the 

contribution of independent variables to the prediction of the dependent variable indicate that 

all the coefficients equal to 0.000. Since, the p-value (0.000) is less than 0.05 (significance 

level), it implies that the removal of the independent variables improved the predictive power 

of the model.  

4.4.3.2 Classification table 

Literature recommends that a good logistic regression model should be indicated by the 

percentage of logistic regression correct classification that is higher than the base (cut value 

0.5) (Sarkar et al., 2010). As the results showed that the classification was at almost 76.5% 

correct (table 4.11), it implies that the model is quite good.   
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              Table 4 11: Logistic regression classification table 

Classification Table 

 Observed 

Predicted 

Landslides 
Percentage 

Correct non occurrence Occurrence 

Step 

4 

Landslides 
non occurrence 23 11 67.6 

Occurrence 5 29 85.3 

Overall Percentage 76.5 

The cut value is 0.500 

        Source: Analysis, 2019 

4.4.3.3 Hosmer and Lemeshow Test 

Hosmer and Lemeshow Test has generally been used for assessment of goodness of fit for 

logistic regression models (Bartley, 2014).  

Thus, the insignificant chi-squares (p-values greater than 0.05) implies an overall goodness of 

fit of the model. Hence, the chi-square values (table 4.12) were insignificant or, in other 

words the Hosmer-Lemeshow test was insignificant (p-value >0.05) indicating that there is no 

remarkable difference between the observed and predicted probabilities of which it is an 

indication of the good model fit.   

                                              Table 4 12: Hosmer and Lemeshow Test 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

4 4.107 8 0.847 

                                      Source: Analysis, 2019 

4.4.3.4 The area under ROC curve 

The area under ROC has been used to validate the logistic regression model (Midi et al., 

2010). The value close to 1 indicates the perfect fit of the model while the value close to 0 

indicates the poor fit (table 4.13). 
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                           Table 4 13: The area under ROC curve 

Area Under the Curve 

Test Result 

Variable(s) 

Area Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 

Precipitation 0.356 0.225 0.486 

Land use/cover 0.277 0.148 0.405 

Slope Gradient 0.658 0.528 0.789 

a. Under the nonparametric assumption 

b. Null hypothesis: true area = 0.5 

                   Source: Analysis, 2019 

The validation result indicated that slope gradient fitted the model very well (ROC value= 

0.658), while the precipitation and land use/cover poorly fitted the model with ROC values; 

0.356 and 0.277 respectively. As the value of the area under the ROC curve (figure4.31) for 

land use/cover and precipitation was low, it indicates that their predictive ability of the fitted 

model is not good.  

                   Figure 4 31: The area under the ROC curve. 

                   Source: Analysis, 2019 
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Generally, based on the assessment made on the performance of the generated landslide 

predictive model, it can be concluded that the model was relatively good, though land 

use/cover and precipitation could not be used to predict the future landslide-occurrence 

probabilities due to their low values of the area under the ROC curve. However, this study 

showed the influence of land use/cover and rainfall on landslide occurrences of which this 

influence should not be ignored when developing strategies that are aimed at minimizing the 

likelihood of landslide occurrences.   
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Chapter 5: CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

From the first objective, this study analyzed the land use/cover changes in Nyabihu district of 

Rwanda from 2005 to 2015. It was noted that there were various changes for each land 

use/cover category of which forest, grassland, tea plantation, bare land, and water all 

increased in their sizes while agricultural land remarkably declined as discussed in chapter 4. 

The results proved the effects of land use/cover changes on landslide occurrences where the 

agricultural land experienced the majority of landslides identified in the study area. Changing 

land use/covers particularly into cultivation activities on steep slopes was noted to be among 

the factors that can easily destabilize the slope and hence leading to landslides. 

In the second objective, the study analyzed rainfall trends for Bigogwe station as the only one 

rainfall station that had long term data record.  Annual precipitation for Bigogwe station was 

generally characterized by decreasing annual rainfall trends. Monthly rainfall at Bigogwe 

station showed decreasing rainfall trends for most of the rainy months (March, April, May, 

October, and December) and only November indicated an upward rainfall trend. Seasonal 

rainfall at Bigogwe station also experienced decreasing rainfall trend in both two rainy 

seasons. Most of the landslides occurred in areas that generally received high annual rainfall, 

confirming the relation between high rainfall and the occurrence of landslides. Thus, it could 

be noted that the amount of rainfall received in an area had some relation to landslide 

occurrences in a particular period of time. Yet, the study noted that there is no defined 

positive or negative relationship evolving constantly between rainfall and landslide 

occurrences.  

From the third objective, causative factors were analyzed in order to determine which factors 

are significant for generating a model. Among the landslide conditioning factors analyzed in 

this study, only slope angle was proven to be a significant predictor variable to landslide 

occurrences. Other landslide conditioning factors (soil depth, slope aspect, and distance to 
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road) were not proven as significant causal factors to landslide occurrences, and hence they 

were eliminated from the logistic regression model. The proven significant causative factors 

(which are land use/cover, slope angle, and precipitation) were used to generate a landslide 

predictive model.  

The study also quantified the correlation of the significant factors to the landslides, and the 

results revealed that their correlation was not strong.  

However, it can be noted that the continuous land/cover changes due to non-stop human 

activities together with the intense rainfall on steep slopes might still give more chances to 

landslide occurrences if no serious mitigation measures are taken. 

5.2 Recommendations 

 Land use/cover change will inevitably increase since the population of Rwanda keeps 

increasing and hence putting pressure on the already scarce land resource. The 

government and other stakeholders should act together to promote efficient land use 

management strategies. This may help in the overall management and minimization of 

landslides in these areas.    

 The decrease in agricultural land in some cases due to population growth forces people 

to cultivate unsuitable steep slopes and hence accelerating the slope instability. This 

should be taken into consideration to enhance proper agricultural practices. 

 In most cases, uncontrolled cultivation activities and other human activities may block 

the normal water channels of which the no-channeled water may easily erode the steep 

land surfaces increasing the instability of the slopes. With this, it is recommended to 

properly canalize the water, particularly rainfall water. 

 Usually soil erosion processes destabilize the steep slopes. So, it is recommended that 

conservation measures focusing particularly on soil protection be promoted.  

 Proper mitigation of landslide hazards requires efficient landslide inventory and timely 

monitoring through proper recording of geographical locations of landslides at each 



79 
 

time of their occurrences, which is still lacking in Rwanda. Therefore, there is a need 

of such timely landslide inventory and monitoring. 

 Radical terraces have proven essential in weakening the damaging capacity of the 

rainfall water flowing down the steep slopes; therefore, terracing of steep slopes is 

recommended to reduce slope instability which may trigger landslides occurrences. 

 

5.3 Areas of future research  

There is still a need of using other techniques to analyze the causes of landslides, and compare 

techniques in determining which technique best predicts the landslide occurrences.  

This study established a relationship between the rainfall amount and the landslide 

occurrences on an annual basis, but did not analyze the effects of prolonged rainy days in 

triggering landslides; hence further studies are required to determine how the prolonged daily 

rainfall can greatly trigger landslides. 
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