

U N I V E R S I T Y O F B O T S W A N A

MSc Computer Science Dissertation

A Greedy Next-hop Selection Module for Vehicular Ad-hoc Network

Routing Using the A* Algorithm Method

by

Gbadebo Oladeji-Atanda

Submitted in partial fulfilment of the requirements of the Master’s degree

in the Department of Computer Science

Supervisor

Prof F J Ogwu

December 2014

ii

Contents

Contents .. ii

List of figures .. v

List of tables .. vii

Acronyms ... viii

Dedication .. ix

Acknowledgements ... x

Statement of originality .. xi

Abstract .. xiii

1.0 INTRODUCTION ..1

1.1 Background ...1

1.2 Related Work ..5

1.2.1 Location-aware greedy protocols ..5

1.2.2 A* algorithm applications .. 11

1.3 Problem Definition ... 12

1.4 Objectives of the study ... 13

1.5 Significance of the Study ... 14

1.6 Scope and limitations of the study ... 14

1.7 Approach .. 14

1.7.1 A* algorithm model ... 15

1.7.2 Basic S* next-hop selection model .. 16

1.7.3 Basic algorithm functional calculations ... 17

1.7.4 Simulation .. 19

1.8 Evaluation .. 19

1.9 Synopsis of the rest of the dissertation ... 20

2.0 LITERATURE REVIEW .. 21

2.1 Routing Protocols in Conventional Networks.. 21

iii

2.1.1 Classic network routing protocol services ... 22

2.1.2 Ad-hoc networks & VANET communication technologies .. 23

2.1.3 WSN routing schemes .. 24

2.1.4 Basic MANET routing protocols ... 30

2.2 Requirements issues in VANET routing protocol design .. 37

2.3 Directions in VANET routing protocol designs... 39

2.4 Models of greedy location-aware routing protocols .. 46

2.4.1 GSR - Geographic Source Routing .. 46

2.4.2 SAR - Spatially Aware Packet Routing ... 46

2.4.3 A-STAR - Anchor-based Street and Traffic Aware Routing ... 47

2.4.4 VADD - Vehicle-Assisted Data Delivery .. 48

2.4.5 GyTAR - Greedy Traffic Aware Routing .. 49

2.4.6 GLAR - Greedy Location-Aided Routing .. 50

2.4.7 HLAR - Hybrid Location-based Ad-hoc Routing .. 51

2.5 Geographic greedy forwarding techniques in MANET/VANET .. 52

2.5.1 Most Forward within Radius (MFR).. 53

2.5.2 Nearest with Forward Progress (NFP) ... 53

2.5.3 Greedy .. 54

2.5.4 Nearest Closer (NC) ... 54

2.5.5 Compass Routing (CR) .. 55

2.6 A depiction of greedy forwarding techniques .. 55

2.7 The A* algorithm method .. 58

2.8 VANET simulation .. 59

2.8.1 Mobility generation issues in VANET research .. 61

2.8.2 Mobility simulators .. 62

2.8.3 Network simulators .. 64

2.8.4 Vanet simulators .. 65

2.8.5 The choice of simulator for VANET study .. 67

2.8.6 Simulation environment ... 70

3.0 METHODOLOGY .. 72

3.1 The A* algorithm function ... 72

3.2 The S* routing module design ... 74

iv

3.2.1 The GLAR route discovery model ... 75

3.2.2 The S* forwarding technique for VANET routing .. 77

3.3 Simulation algorithms design... 82

3.4 Simulation parameters.. 87

3.5 Simulator limitations in the study .. 90

3.6 Analysis data characteristics .. 90

4.0 SIMULATION RESULTS & EVALUATION ... 91

4.1 Performance of the S* forwarding technique ... 91

4.1.1 Comparison of Greedy and S* unicast incoming packets .. 91

4.1.2 Comparison of Greedy and S* unicast outgoing packets ... 97

4.2 Effect of the orthogonal distance to baseline search-space limiting .. 102

4.2.1 Effect of vertical distance selection limit of nodes on unicast incoming packets 102

4.2.2 Effect of vertical distance selection limit of nodes on unicast outgoing packets 107

4.3 Position-aware forwarding dynamics ... 111

5.0 DISCUSSION & FUTURE WORK .. 116

5.1 Efficiency of the S* forwarding technique .. 116

5.2 Effectiveness of the orthogonal-to-baseline search space limitations 118

5.3 Case for dynamic hop-after-hop position-aware forwarding ... 122

5.4 Future work .. 123

6.0 CONCLUSION .. 125

REFERENCES .. 127

APPENDICES ... 136

Appendix A: S* Forwarding code sections .. 136

Appendix B: Street maps ... 148

Appendix C: Node densities .. 149

Appendix D: Networking protocols stack view in the EstiNet simulator .. 150

Appendix E: Confidence interval determinant ... 151

Appendix F: A dense VANET scenario ... 152

v

List of figures

Figure 1.1: Types of mobile ad-hoc networks .. 1

Figure 1.2: Vehicular ad-hoc networks protocols stack (adapted from [10]) 3

Figure 1.3: A development timeline of greedy routing protocols for VANET [15] 4

Figure 1.4: Location-based greedy forwarding ... 6

Figure 1.5: Void area problem in greedy forwarding .. 7

Figure 1.6: Route discovery baseline in the GLAR scheme [19] .. 8

Figure 1.7: Variants of greedy forwarding [30] .. 11

Figure 1.8: A* next-hop selection method ... 15

Figure 1.9: Basic S* routing model (adapted from [19]) ... 17

Figure 1.10: Vertical distance measures .. 18

Figure 2.1: VANET communications structure .. 24

Figure 2.2: WSN configuration [46] ... 25

Figure 2.3: WSN hierarchical design [50] ... 26

Figure 2.4: Flooding drawbacks [51] .. 27

Figure 2.5: Directed Diffusion routing method [50].. 29

Figure 2.6: A MANET of mobile user devices ... 31

Figure 2.7: MPR scheme [59] .. 33

Figure 2.8: AODV routing [11] ... 34

Figure 2.9: GPSR void repair strategy [21] ... 36

Figure 2.10: GPCR repair strategy [67] .. 37

Figure 2.11: Taxonomy of VANET routing protocols [14] .. 39

Figure 2.12: Data Dissemination Methods [72] .. 42

Figure 2.13: Greedy failure in the void area .. 44

Figure 2.14: SAR’s use of spatial awareness for geographic forwarding [77] 47

Figure 2.15: Route discovery baseline in the GLAR scheme [19] ... 50

Figure 2.16: Variants of greedy forwarding [30] .. 52

Figure 2.17: Greedy forwarding projections of MFR and NFP on the line SD [31] 53

Figure 2.18: Comparison of Greedy and A* schemes ... 54

Figure 2.19: Comparison of Compass Routing and GLAR algorithms 55

Figure 2.20: Path selections with different greedy algorithms (adapted from [31]) 56

Figure 2.21: Evolution of mobility modelling strategies and techniques in VANET research [87]60

Figure 2.22: VANET simulators [38] ... 62

Figure 2.23: Strength of Traffic, VANET, and Network simulators [4] 67

Figure 2.24: Features of EstiNet architecture [97] .. 70

Figure 3.1: The A* path-search pseudocode [32][34] ... 73

vi

Figure 3.2: GLAR protocol model[19].. 75

Figure 3.3: An example of DIST and VDIST [19] .. 76

Figure 3.4: Next-hop choice region delineation for a forwarding node n 78

Figure 3.5: Next-hop selection function based on A* algorithm .. 78

Figure 3.6: The g(n) cost model in the S* function ... 79

Figure 3.7: S* Next-hop Selection Pseudocode .. 80

Figure 3.8: S* forwarding model (adapted from [19]) ... 82

Figure 3.9: The greedy packets forwarding use-case diagram .. 83

Figure 3.10: The greedy packets forwarding collaboration diagram .. 84

Figure 3.11: S* forwarding code segment ... 86

Figure 3.12: Dialog-box for setting protocol parameters, showing the VDIST_MAX slot 87

Figure 4.1 (a) - (i): Comparison of Greedy and S* number of unicast incoming packets 91

Figure 4.2 (a) - (i): Comparison of S* and Greedy number of unicast outgoing packets 97

Figure 4.3 (a) - (e): The effect of Vdist nodes selection limits on unicast incoming packets 103

Figure 4.4 (a) - (e): The effect of Vdist nodes selection limits on unicast outgoing packets 108

Figure 4.5 (a) - (d): Snapshots of animated AODV packets forwarding 111

Figure 4.6 (a) & (b): Snapshots of animated greedy packets forwarding as follows 114

Figure 5.1 : RDIST radial distance measures of nodes within the range of node N 119

Figure 5.2 (a) & (b): VANET scenario showing nodes transmission ranges 120

Figure 5.3: Transmission range delimiting using RDIST_MAX mechanism 121

vii

List of tables

Table 2.1: Comparison of existing greedy forwarding techniques with the A* technique 57

Table 2.2: Comparison of TraNS, Veins, and EstiNet simulators [38][85][89] 68

Table 2.3: Features of the EstiNet simulator/emulator (adapted from [95][96]) 69

Table 2.4: Simulation parameters comparison ... 71

Table 3.1: Simulation Parameters .. 88

Table 3.2: Simulation node densities .. 88

Table 3.3: Simulation packet specifications ... 89

viii

Acronyms

MANET – Mobile Ad-hoc Network

VANET – Vehicular Ad-hoc Network

WSN – Wireless Sensor Networks

V2V – Vehicle-to-Vehicle

ITS – Intelligent Transport System

DSRC – Direct Short Range Communication

WAVE – Wireless Access in Vehicular Environments

WSA – WAVE Service Adverts

IDM – Intelligent Driver Model

AODV – Ad-hoc On-Demand Vector Routing

GPSR – Greedy Perimeter Stateless Routing

GPS – Ground Positioning System

MFR – Most Forward within Radius

NFP – Nearest with Forward Progress

CR – Compass Routing

NC – Nearest Closest

A* – A-star algorithm

S* – Successive A* algorithm

DIST – Distance mechanism

ix

Dedication

I dedicate all my works to the glory of God always. This work is further dedicated to the love of

my wife Beatrice and children Simon, Abigail and Mary; all of who have had to endure almost

three years of unintended separation from me during the period of completing this programme.

Similarly, I dedicate this work to the comfort of several people who both they and I suffered

inaccessibility to each other during the period 2012-2015. Finally, I dedicate the work to the

honour of my late mother Eunice Mopelola, and my aged father Emmanuel Oladeji Atanda.

And further, by these, my son, be admonished:

of making many books there is no end;

and much study is a weariness of the flesh.

[98]

Let us hear the conclusion of the whole matter:

Fear God and keep his commandments:

for this is the whole duty of man.

Ecclesiastes 12:12, 13

x

Acknowledgements

I express appreciation for the guidance of Dr G Malema, who assessed my initial research

interest and thoughts on sensor networks and directed me to Prof F J Ogwu, whose impetus for

vehicular ad-hoc networks routing that I eventually chose to study invigorated me further. I

express thanks to Prof Ogwu who became my supervisor, and generously financed my

procurement of the EstiNet network simulator. Andrew Anam gave me a little push onto linux

systems, while Bigani Sehurutshi bailed me out on occasions. Alex Moyo accommodated me

cordially in the Network Lab of the UB Computer Science Dept. Largely, I enjoyed the supports

of academic staff, technicians and colleagues in the department.

At the start of this programme of study, I was buoyant financially; but by the time of completion,

I was virtually in rags. My gratitude goes to several people; God recognizes them all by name

that liberally rendered to my necessities. I am thankful to the beloved family of Otu, namely

Lawrence and Charity, together with their children Jude, Oge, Oyinye, Oluchi and Victory, who

in simplicity and sincerity offered me a warm lodging in Gaborone during the one year

protracted period that the dissertation lasted.

xi

Statement of Originality

I, Gbadebo Oladeji-Atanda, declare that this dissertation is my own work. I have duly

acknowledged and referenced the sources used in the work. This dissertation is original work

not submitted to any other institution for the award of a degree or diploma.

……………………….. ……………….

Signature Date

xii

Approval Page

xiii

Abstract

The potentials of traffic data sensing and vehicle-to-vehicle (V2V) communications for

advancing traffic safety and efficiency at low costs is stirring the IEEE 802.11p vehicular ad-hoc

network (VANET) type. However, the VANET milieu of incessantly high mobility nodes

renders contemporary routing protocols ineffective in it. The development efforts of an

appropriate protocol for VANET routing have narrowed towards the position-aware greedy

scheme, which involves making next-hop forwarding choices of a neighbour that is

geographically closer to destination continually. Forwarding techniques in MANET/VANET

that use the geographic greedy scheme to make next-hop selections include MFR, NFP, CR, NC

and Greedy.

We propose an alternative technique for packets forwarding in VANET. We designed the S*

next-hop selection method, based on the A* path search algorithm. In addition, we developed a

next-hop search-space limiting mechanism using the GLAR protocol’s baseline and DIST

(distance) concepts. We utilised the EstiNet simulator to model and evaluate our designs in

terms of unicast outgoing and incoming packets delivery success rates.

The performance graphs remarkably show the S* technique demonstrating better results than the

common Greedy technique in VANET routing. We further realized a phenomenon of either the

S* or the Greedy method functioning best during certain periods of the packets forwarding

duration. These alternating efficacies suggest prospects for the development of some

hybridized-greedy technique for a more optimal next-hop selections method in VANET routing.

The results also demonstrated the DIST mechanism’s impact on packets delivery rates. Besides,

we simulated and show the inefficiency of table-driven routing methods in VANET as compared

to the dynamic greedy and geographic forwarding type.

1

1.0 INTRODUCTION

1.1 Background

Vehicular ad-hoc networks (VANET) development has advanced progressively, over the past

decade, from the background of Wireless Sensor Networks (WSN) and Mobile Ad-hoc

Networks (MANET) to become another stride in ad-hoc networks technology [1][2][3]. These

wireless network types consists of functional autonomous system units; which when deployed in

a site have the capacity to self-organise, interconnect and interoperate without a central

controller or a pre-existing infrastructure (Fig. 1.1).

MANET of Sensors - WSN

MANET of Mobile Devices

MANET of Vehicles - VANET

Figure 1.1: Types of mobile ad-hoc networks

An operational WSN deployment typically can contain several hundreds or thousands of cheaply

produced nodes that could be positioned for sensing and harvesting some physical environmental

conditions data; which are then periodically transmitted over the multi-hop ad-hoc network

2

formed by the nodes to some base station. The idea of leveraging ad-hoc network technology

therefore to the road arena for the sensing, acquisition and dissemination of traffic data in

supporting the Intelligent Transport System (ITS) management forms the prime premise for the

current VANET development efforts. VANET inquiry has included several aspects such as

electronics, software engineering, automotive, transportation, security, and QoS considerations;

however, the routing protocol development part has received much more attention from the

research community [4]. Consumer services expected through VANET include automated

traffic controlling, road safety and efficiency information dissemination, Internet access, data

streaming, advertisements etc. [5][6][7].

The vehicular ad-hoc network (VANET) type consists of mobile vehicles that are equipped to

communicate wirelessly with each other and with stationary Roadside Station Units (RSU). The

RSU or Access Points (AP) could serve for service links, such as in automated toll collection

point, or as a gateway to some WAN. The IEEE 802.11n and 802.11p (Fig. 1.2) interface

standards in the internetwork protocols stack have been specified to aid vehicle-to-vehicle (V2V)

and vehicle-to-roadside infrastructure (V2I) communication in VANET; while the US FCC,

among others, has assigned to it the Dedicated Short Range Communications (DSRC) spectrum

of 75 MHz at 5.95GHz [8][9].

Moreover, some major VANET experimental projects have been successfully implemented;

which include the Intelligent Vehicle Initiative (IVI 1998-2004, USA), Vehicle Infrastructure

Integration (VII 2004-2010, USA), FleetNet (2000–2003, EU), Cooperative Vehicles and

Infrastructure Systems (CVIS 2006–2010, EU), and the Advanced Safety Vehicle programmes

(ASV 1996–2000, 2001–2005, 2005–2007, Japan). The broad purposes for these field trials

include the evolvement of VANET operating standards as well as the validation of its

fundamental safety applications, e.g. the automated proximity-sensing and braking system.

3

Application Layer

Transport Layer

Network Layer

Physical Layer

Traffic Safety

Infotainment

Traffic Efficiency

TCP, UDP, Other

VANET Routing Protocol

802.11p 802.11n

Figure 1.2: Vehicular ad-hoc networks protocols stack (adapted from [10])

So far, there is no standard packet routing protocol found suitable for VANET. Traditional

network routing protocols, such as OSPF and RIP have been found unsuitable; neither are Ad-

hoc On-Demand Distance Vector (AODV) [11] and Dynamic Source Routing (DSR) [12]

protocols that are popular WSN/MANET systems. The unsuitability of these traditional routing

protocols in VANET is primarily due to the high rate of mobility that is inherent in vehicular

nodes, and the consequent rapidly changing network topology.

Other problems related to VANET operation include casualness with which nodes enter and exit

from the set-up, its unbounded network size, and its high potential for frequent linkage

partitioning. Nevertheless, VANET, unlike WSN, has little or no power supply and memory

storage problems; since its power-supply is obtainable from the relevant automotive power

system, and its memory size is easily scaled in vehicular hardware.

The following summarise general observations concerning the VANET routing protocol

development efforts:

 No perfect routing protocol to use so far [13]

 Most designs handle only a particular portion of the problem [14]

4

 The solution trend is toward geographic greedy forwarding schemes [15][16][14]

 There are substantial variations in the way that protocol designs choose next-hop [17]

 It is hard for a single protocol design to handle the challenges of such a dynamic

network, hence a requirement for some hybrid method [2].

Fig.1.3 is a timeline depiction of the geographic greedy protocol designs for VANET routing;

although there are others that should have fitted into the figure, such as CAR [18], GLAR [19],

and BAHG [20]. In general, these algorithms that employ greedy path search and forwarding

method have appeared to be more viable in VANET than those requiring maintenance of routing

tables.

Figure 1.3: A development timeline of greedy routing protocols for VANET [15]

The Greedy Location-Aided Routing (GLAR) [19] protocol is of particular interest to our study

on routing protocol designs due to its application of the baseline concept, which it uses to aid the

geographic location-based routing path discovery. Note that the A-STAR (Anchor-based Street

5

and Traffic Aware Routing) protocol listed in Fig. 1.3 is not attributable with the A* algorithm

approach, nevertheless it utilizes the basic Dijkstra’s greedy algorithm for routing. However, the

current study also has interest in the A* algorithm as an alternative basis for implementing

geographic greedy forwarding in VANET.

1.2 Related Work

The trend in VANET routing protocol designs has been in favour of location-aware and

geographic greedy forwarding methods [15][16][14]; which we discuss in this section, and

elaborate more in section 2.0. Similarly, we shall remark on the A* path search method that

provides the algorithmic basis for our routing protocol module development in this study.

1.2.1 Location-aware greedy protocols

The purpose in VANET location-aware greedy routing protocol designs is to find suitable

source-destination path linkages for effecting communication an ad-hoc topology, which itself

floats over an underlying road network structure. Dijkstra’s algorithm has commonly been

employed in these greedy designs; for both charting routes over mobile vehicular nodes as well

as over static landmarks such as junctions. The advancing of packets in location-aware greedy

methods involves choosing next-hop that is geographically closest to the destination at each

stage (Fig. 1.4). Hence, each node need only acquire or maintain network information about the

positions of its immediate neighbours to be able to make forwarding decisions. The relevant

information about the geographical location of nodes over an area’s map or over the earth’s

topographical coordinates is obtainable from GPS units that are at present being installed in

automobiles. Some survey of the greedy based routing protocol designs available so far have

6

been conducted [15][16]; a sampling of which we proceed to discuss in relation to their multi-

hop forwarding techniques.

N
DN’

next-hop node closest to destination
Transmission range

 Figure 1.4: Location-based greedy forwarding

The Greedy Perimeter Stateless Routing (GPSR) [21] developer provided a seminal work in the

use of geographic location for forwarding packets in mobile networks. The nodes in GPSR

acquire and maintain neighbour location information through a periodic beaconing service.

Every forwarding node makes locally optimal decision for each packet by choosing for it the

next-hop neighbour node that is geographically closest to its header-marked destination. GPSR

additionally provides a supplementary perimeter routing component for situations where no

neighbour is geometrically closer to the destination than the forwarding node itself, i.e. when

greedy forwarding fails at some local maxima. The problem of local maxima or routing void

(Fig. 1.5) is a vital open issue in VANET greedy forwarding research [22][18].

7

N
D?

vo
id

 a
re

a

N'
N''

There is no next-hop within transmission range

that is geographically closer to destination

N'''

 Figure 1.5: Void area problem in greedy forwarding

As shown in Fig. 1.5, the GPSR perimeter routing component has the capability to route round

the void area by forwarding through N → N′ → N′′ using the planarization technique and the

right-hand rule for traversing a graph (if such a path exists). Then GPSR recovers to normal

greedy mode after crossing the void with onward forwarding through N′′′ to the destination D.

However, the perimeter forwarding also fails if there is a lack of a face traversal graph setup

around the void. GPSR had become popular as a VANET routing protocol benchmark;

nonetheless, a flurry of protocol designs have come up after it because the solution it provides is

inadequate.

The Greedy Location-Aided Routing (GLAR) [19] protocol is designed to improve on the

Location-Aided Routing (LAR) [23] protocol, both of which are primarily designed for route

discovery in MANET. These protocols in their operation initially at the source node do establish

the destination node’s position as obtainable from a GPS system; and then compute a geographic

route map to the destination using the Greedy algorithm upon intermediate nodes’ locations.

LAR aims to reduce the number of nodes that respond to flooding-based RREQ messages, by

restricting request to an area as depicted by the rectangle in Fig. 1.6. GLAR improves upon the

search area reduction by employing a baseline value that is a source to destination virtual

8

straight-line connection, surrounding which a greedy algorithm forwards a unicast RREQ

message. The GLAR algorithm chooses the next-hop at each stage based on the option of being

closest to the baseline but advanced farther away from the source node than the currently

forwarding node. The GLAR protocol achieved improvement on connection lifetime and

packets delivery rate with reduced control overhead as compared to LAR.

Figure 1.6: Route discovery baseline in the GLAR scheme [19]

The Hybrid Location-based Ad-hoc Routing (HLAR) [17] is not connected to the preceding, i.e.

GLAR, but it is a hybrid method that profoundly combines principles of topology-based reactive

routing such as is found in Ad-hoc On-Demand Distance Vector (AODV) [11] with that of

geographic routing method, such as in Location-Aided Routing (LAR) [23]. The HLAR authors

emphasize the view that no one type of protocol design approach can satisfy VANET protocols’

complex requirements.

Geographic Source Routing (GSR) [24][15] is an early VANET position-based routing protocol

design that uses static road topology map as a basis and supplement to geographic forwarding;

9

by the charting of routing paths along streets. The routing plan engages the Greedy algorithm to

pre-compute the sequence of road junctions that packets have to traverse from source to

destination; and the resulting route map is inserted in packets’ headers accordingly. But GSR

suffers from excessive packet overhead, as well as packets dropping along streets where traffic

might be sparse [15].

Anchor-based Street and Traffic Aware Routing (A-STAR) [25] has a design that is similar to

that of GSR, only it names junctions as ‘anchor’ points. A-STAR makes an improvement on

GSR by providing packets recovery mechanism for sparse streets where voids might occur, i.e.

situations of no next-hop node closer to destination. Recovered packets are then dynamically re-

routed along some momentarily computed anchor path. Although A-STAR delivers 40% more

packets than GSR and GPSR, it nevertheless also suffers from excessive packets overhead as

GSR.

Greedy Traffic Aware Routing (GyTAR) [26] is similar to A-STAR in design; but rather than

pre-compute the source-destination route, the next-hop path is dynamically determined by the

Greedy algorithm at each forwarding junction or node as the case may be. In-between any two

junctions, an ‘improved’ greedy method is supplemented by adjacent vehicular nodes’ speeds

and directions’ information is used to forward packets. GyTAR incurs high computation and

communication overhead [20].

Vehicle-Assisted Data Delivery (VADD)[27][28] routing protocol is a geographic packet

forwarding design with DTN (Delay Tolerant Network) features, which provides mechanisms

for managing incidental delay in data delivery. DTN capability serves some applications best,

such as email delivery. VADD employs the predicable nature of vehicle mobility along the road

network routes to choose forwarding along most viable streets’ paths containing sufficient

connecting nodes. Nevertheless, when a void occurs, VADD data packets remain in the carrier’s

buffer until it encounters a viable next-hop and then effects transmission. As such, VADD’s

10

design goal addresses sparse network environments; however, our aim is to address routing

effectiveness in connected network situations.

The general pattern in the above set of protocol designs aptly reflect the notion of geographic

greedy forwarding; with each design also variedly supplemented by some other decision-making

features such as the prevailing traffic density along streets. Strategies that are adopted for the

hop-by-hop forwarding of packets in a network depend on the dynamics of the specified

environment. Three main packet forwarding schemes are identifiable in geographical or

position-based VANET routing protocol designs. These are greedy forwarding, restricted

directional flooding, and hierarchical strategies [22][29]; which though are not mutually

exclusive. Regarding greedy forwarding, the main techniques described for it in the

MANET/VANET literature [30][22][31] are:

 MFR – Most Forward within Radius [Takagi and Kleinrock 1984]

 NFP – Nearest Forward Progress [Hou and Li 1986]

 Greedy [Finn 1987]

 CR – Compass Routing [Kranakis and Singh 1999]

 NC – Nearest Closer [Stojmenovic and Lin 2001]

Fig. 1.7 depicts the above-listed techniques, where S and D represent the source and destination

nodes respectively; and the circle depicts the transmission range of the forwarding node, which

is also S in this case. Other labelled nodes show the potential next-hop choice from S in

accordance to the pertinent method.

11

 Figure 1.7: Variants of greedy forwarding [30]

In the current study, we show the design of another viable greedy technique that is based on A*

path search technique rather than the basic Dijkstra’s Greedy algorithm that has been generally

employed by the routing protocol designs that were earlier described. Although A* is an

extension of Dijkstra’s algorithm, nevertheless it has attained a reputation as an efficient path

search algorithm in several graph problems [32].

1.2.2 A* algorithm applications

The A* algorithm has been popularly used in optimal-path-finding problems over mapped

terrains. The popularity of A* derives not only due to its efficiency in path finding, but also its

adaptability and extensibility at different levels and in various domains of search problems

[33][32][34]. It has been engaged in spheres that include robotics, networks, biology, database

systems and games. For example, A* algorithm approach is found to outperform the generalized

Dijkstra’s algorithm in the time dependent shortest path problem in dynamic networks for the

computation of fastest path routes that minimize travel time for truck drivers [35].

12

However, broadly viewed, A* algorithm’s performance has been quite notable over static grids;

whereas our extensive literature review did not show where A* algorithm’s performance has

been verified on shifting grids (or nodes), such as in VANET. But on the other hand, Dijkstra’s

greedy path search has been widely implemented in the VANET environment, as has been

previously shown in this section. Hence the current study serves also as an opportunity to

determine the performance of A* algorithm in environments of non-static grids.

1.3 Problem Definition

The need for some efficient routing protocol is currently a challenge to the emerging vehicular

ad-hoc network (VANET) type. In particular, VANET requires an effective geographic greedy

next-hop selection technique for routing packets over the characteristically high mobility and

rapidly transforming VANET topology.

Problem Statement

There is no optimally efficient geographic greedy next-hop selection module in VANET routing

protocol designs for the vehicle-to-vehicle (V2V) multi-hop packets relay.

Research Question

Can an optimally efficient location-aware greedy next-hop selection module for packet

forwarding in VANET V2V communication be designed; with the use of A* path search

method, which is further supplemented by a search space limiting function?

13

Supporting Questions

1 Can we design an optimally efficient next-hop selection routing module for VANET multi-

hop data forwarding?

2 Can an efficient location-aware greedy packets forwarding technique be developed for V2V

data relay in VANET?

3 Will A* algorithm path search approach for packets forwarding be effective and efficient in

VANET where the grids are constantly shifting?

4 Rather than using only a static pre-computed baseline, as in GLAR [19], can baselines for

enhancing limitation of search space be dynamically computed at successive forwarding

nodes in VANET communication?

5 Can baselines’ values be obtained for every potential forwarding node and used to serve as

heuristics parameters at the currently forwarding node for the A* path determining

algorithm?

1.4 Objectives of the study

In order to answer the questions above we state the related objectives as follows:

1) To design a geographic greedy forwarding next-hop selection technique for VANET

packets routing using the A* algorithm method.

2) To design a supplementary search-space limiting function based on the orthogonal

proximity of nodes to the virtual baseline that connects any forwarding node to the

destination node, for reduced overhead in VANET routing.

14

3) To design a functional greedy routing protocol module for VANET packets forwarding,

encompassing 1 and 2 above

1.5 Significance of the Study

This study thus makes the following contributions.

 Produce an alternative greedy forwarding technique that uses the A* algorithm method

with capability for operation over VANET. Specifically, this study attempts to introduce

another greedy forwarding technique to the menu of existing MANET/VANET

techniques such as MFR (Most Forward within Radius).

 Produce an assessment basis for the A* algorithm’s performance over terrains of shifting

grids, which apparently has not been reported in the research literature.

1.6 Scope and limitations of the study

This study on routing protocol module design is concerned with vehicle-to-vehicle (V2V) inter-

communication over VANET. Inter-vehicular communication could occur along the highway or

within urban areas; this study attempts to include both. The study is not involving secondary

issues, such as delay tolerance scheming in VANET, that are being addressed by some other

research projects [2][36].

1.7 Approach

The process of the study involves ultimately producing a next-hop selection design that

implement the A*-like greedy forwarding technique over dynamic grids of vehicular nodes,

together with the associated supplementary search-space limiting component. The A* technique

15

design is validated, through the use of a suitable VANET simulator, against the basic Greedy

forwarding approach that is found in protocols such as are described in section 1.2.1. Similarly,

the effectiveness of the search-space limiting function is evaluated by comparing some sample

limits’ performances graphs. We also use screen-shots from an animated simulation of the

VANET scenario to evaluate the performance of position-aware greedy hop-by-hop routing of

packets against the method that utilises pre-computed source-destination route mapping.

1.7.1 A* algorithm model

The A* algorithm uses the function f(n) = g(n) + h(n) to evaluate suitability of node links in

path search problems [32]. The function g(n) is the weight of the distance from the source node

to the current hop position node n, while h(n) is the weight of the distance estimate from the

current node n to the goal node. In the VANET environment depicted by Fig. 1.8, N is the

current packet forwarding node that has the option of choosing either A or B as the next-hop

node, based on the A* evaluation function f.

g(B)

g(A)

h(B)

A

B

h(A)

Baseline

next-hop choice node n is B,

which has lowest f = g + h value

DN

Figure 1.8: A* next-hop selection method

At any currently forwarding node, when the algorithm performs an evaluation of potential next-

hops, the neighbour node that yields the lowest f value is to be chosen as the next-hop because it

is deemed to lie along the least-cost path.

16

1.7.2 Basic S* next-hop selection model

In the S* implementation, an A* algorithm copy resides on each node in the network for

deciding next-hop for each packet that arrives at the node; thus achieving multi-hop forwarding

and dynamic routing in the VANET situation. Thus, we picture successive A* instantiation at

every succeeding forwarding node. Therefore for simplicity, we use the term S* technique to

describe the VANET next-hop selection function that uses the A* algorithm method; and we

refer to it as the S* module when combined with the path search space limiting supplement.

The GLAR [19] routing protocol method has been described in section 1.2.1. The peculiarity of

the GLAR protocol model is its use of a pre-computed baseline to supplement routing path-

search from source node S toward the destination node D as in Fig. 1.9. Going from S, the

GLAR algorithm selects nodes A and I as next-hop respectively because they are closest to the

destination along the geographic route to D; and are furthermore correspondingly closest to the

baseline SD. However, where GLAR would choose node K as the next-hop in the subsequent

stage, S* could choose node M based on the shift of D to D′. This is apparently a better choice

in the dynamic environment of moving targets. The S* model extends the GLAR model without

the ‘closest to baseline’ rule, but rather utilizes the baseline parameter as an heuristic input value

h(n) in its A* algorithm type method. Furthermore, the S* module uses the baseline’s

orthogonal limits to demarcate the extent of optimum next-hop choice bounds.

17

D

L

K

I

J

H

C
B

A

S

E

F

G

baseline

D’

An intermediate baseline

generated at I

M

Figure 1.9: Basic S* routing model (adapted from [19])

We represent the differences between the GLAR technique and the S* as follows:

GLAR route discovery and forwarding scheme

 Greedy + closest to baseline hops choice, pre-computed entirely at source node

S* packets forwarding technique

 S* path computation at every hop using baseline values.

1.7.3 Basic algorithm functional calculations

The basic calculations required for baseline determination and destination node’s displacement

are as listed:

 Distances, (e.g. f = g + h distances)

For every distance PQ,

18

 (1.1)

 The baseline

For every baseline PQ, with points P(and Q(),

 (1.2)

When the values of points P and Q are plugged into the equation (1, 2), it yields equation of

a straight line to denote the particular baseline:

 (1.3)

 The orthogonal or vertical distance to baseline of a node as used in [19], and as shown in

Fig. 1.10 is calculated as:

 (1.4)

N D
Baseline

VDIST

Figure 1.10: Vertical distance measures

19

1.7.4 Simulation

Experimental research effort in VANET has generally been by the use of simulators. VANET

simulation had involved the coupling of some vehicular mobility generator such as SUMO with

a data network simulator such NS-2; by importing the mobility trace file into network simulation

environment [37][38][39]. However, this loose coupling approach does not support the

manipulation of the vehicular objects’ setting and behaviour differently from what a trace

structure originally comprises; neither does it deliver an effective two-way affective feedback for

the conjoined systems. Hence, VANET researchers have been demanding for composite

simulator tools uniquely designed for VANET’s environment modelling. It is further required

that such integrated simulation facility should encompass realistic wireless channel modelling

[39], as well as the comprehensive characterization of road topography and mobility at the

macroscopic cum microscopic levels [40]. The nascent EstiNet simulator (aka NCTU-ns)

appears to exhibit a good level of these qualities; and accordingly we employ its use in this

research. According to [38], NCTU-ns exhibits a lot of advantages over traditional simulators

such as NS-2 and OPNET, and it has been depicted as a most realistic VANET simulator

compared to several others [4]; all of which we discuss in details in some latter sections.

1.8 Evaluation

We evaluated the efficiency of the greedy forwarding technique design and the overall

performance of the S* forwarding module on packets delivery success rate as follows:

 Compare the end-to-end packets forwarding performance of the A*-like (S*) technique

with that of the basic Greedy technique.

 Measure the effectiveness of the function that limits next-hop search-space to some set

orthogonal regions around the baseline.

20

 Compare the performance of location-aware greedy forwarding that computes next-hop

at every forwarding node with that of Ad-hoc On Demand Vector (AODV, [11]) reactive

table-driven approach.

We compare performances of the methods principally on packets delivery success rate using

graphed result charts. The originally expected outcome is an at par performance of the S* and

basic Greedy techniques in greedy geographic forwarding; but with an added advantage of

reduced packets travel distance in the use of the S* technique. Furthermore, the introduction of

the baseline orthogonal limiting of next-hop space search component in the S* module is

expected to promote reduced routing overhead.

1.9 Synopsis of the rest of the dissertation

The rest of the dissertation is organised as follows. In the next chapter a review of the VANET

literature is given. Then chapter 3 describes related models and design features of the S* routing

technique as well as the methodology of approach to its evaluation. In chapter 4 we present

simulation results and analysis of the S* module implementation, while in chapter 5 we discuss

the relevant findings and make conclusions.

21

2.0 LITERATURE REVIEW

This section provides a review of works related to the VANET routing protocol designs and

development; particularly as concerns geographic greedy forwarding. We also discuss the A*

algorithm approach which we employ in the formulation of the S* forwarding technique design

for VANET routing. Finally, we describe the simulation environment for the evaluation of the

design outcomes.

2.1 Routing Protocols in Conventional Networks

Computer networking development has matured into intricate levels of interconnected systems

with very high degree of interoperability and scalability. Infrastructure or ad-hoc, wireline or

wireless, are some of the main features that describe network tracts; which also have bearing on

the type of routing protocol that may be applicable in each case. Network routing protocols are

developed based on the need for multiple interconnected computing and peripheral devices to

interact; which should happen automatically, seamlessly, and along optimally determined multi-

link paths. Unlike in the fixed infrastructure networks, virtually all nodes in ad-hoc networks

perform the function of routers in addition to being hosts. The VANET type of network in

consideration is only conceivable in the ad-hoc and wireless mode. Specified routing protocols

are the implement that enable the automated hopping of data packets from a source unit, across

intermediate points, to some designated end.

22

2.1.1 Classic network routing protocol services

Classic network linkages feature dedicated traffic router devices, which have the capability to

pre-learn path connections to every reachable destination within their respective domains; and

can readily forward packets along chosen routes according to some policy, e.g. shortest-path

forwarding requirement. Routing protocols’ functions include route discovery, path

maintenance and packets delivery across network grids by using some multi-hop forwarding

technique. Routers in classic networks generally grow and maintain routing tables that portray

connectivity to every part of their domain. The inherent advantage in table-driven systems is the

immediate availability of routing information at the moment when there is a need to forward

packets; thus eliminating route acquisition latency [41]. Network routing tables are normally

constructed and updated periodically and dynamically too; however static configuration may be

applied sometimes, such as in very small and static network. Whatever is the case, static routing

configuration is not viable in VANET since vehicular nodes are in constant motion; and for the

same reason the maintenance of routing tables is unrealistic.

Link-State (LS) and Distance-Vector (DV) are the two basic forms of classic routing protocols

approach in infrastructure networks, which enable per-router broadcasts of connectivity

information for the development of routing tables. In both the LS, where each node periodically

broadcasts its local neighbours list, and the DV where each node broadcasts its global

connectivity information, every other connected router uses these data to update their respective

tables. RIP and OSPF are examples of routing protocols that respectively implement the above-

mentioned routing approaches and have proved so effective in packets forwarding.

Nevertheless, attempts to employ these protocols in VANET has been unsuccessful [42] due

primarily to its topology dynamism.

23

2.1.2 Ad-hoc networks & VANET communication technologies

VANET belongs to the class of ad-hoc networks, which operate without fixed infrastructure; but

the nodes are equipped with transceiver devices for enabling wireless communications. Other

existing ad-hoc systems include military tactical networks, Personal Area Networks (PAN),

Body Area Networks (BAN), home networks, disaster management networks, WSN, and

MANET [43].

A range of IEEE interface standards have been defined for the ad-hoc network types [43][44].

The Wireless PAN (WPAN) IEEE 805.15.1 (aka Bluetooth) operates a short transmission range

of 10m and 1mbps data rate at the globally unlicensed frequency band of 2.4 GHz. A Bluetooth

supported network can contain at most eight mobile devices to form a piconet consisting of one

designated master and n (n ≤ 7) slaves, beyond which new piconets are hatched and scale into a

scatternet cluster when the participating devices’ number increases. The WPAN IEEE 805.15.4

(aka Zigbee) is defined for very low-rate (250kbps) data transmission requirements such as in

WSN, wireless keyboard, and medical sensors. The WLAN IEEE 802.11 (WiFi) specification is

for systems that require higher bit rates. IEEE 802.11b operates at the frequency band of 2.4

GHz and data rate of 11mbps, which is appropriate for wireless access in hotels, airports, etc.

The IEEE 802.11a operates at 5GHz range and data rate of 54mbps for higher capacity support

in environments such as offices. The IEEE 802.11n operates at both 2.4 and 5 GHz levels with

data throughput of up to 600mbps and transmission range of 250m, which makes it suitable for

use in campus settings.

IEEE 802.11n and 802.11p interface standards are specified for the VANET environment

[8][4][9]. IEEE 802.11p specification is particularly for wireless access in vehicular

environments (WAVE), in the US licensed ITS band of 5.9 GHz, with support for transmission

range of up to 1000m and fast data rates of up to 27mbps. Both 802.11n and 802.11p are

dedicated short-range communication (DSRC) standards for both vehicle-to-vehicle (V2V) and

24

vehicle-to-infrastructure (V2I) wireless connections as in Fig. 2.1. An exchange of information

between users in separate vehicles or an automatic collision avoidance operating mechanism

between adjacent vehicles would involve a V2V connection; while a V2I connection would be a

link to a Road-Side Unit (RSU), for perhaps provisioning of connection to the Internet.

Figure 2.1: VANET communications structure

The general expectation is that the VANET system shall eliminate the existing cumbersome and

costly ITS infrastructures sited on road networks. Considering the developing regions of the

world where such traffic facilities are scarce or are easily vandalised, e.g. in most of sub-Saharan

Africa, the VANET solution for transportation management offers a better prospect [45].

2.1.3 WSN routing schemes

The successfulness of Wireless Sensor Networks (WSN) applications in military and

environmental monitoring tasks have been a significant influence on the upcoming idea of

VANET [46][47]. A WSN node consists of integrated microcontroller, sensor probes,

transceiver and a battery power unit. These nodes can be deployed deterministically or

randomly in their environment of operation (Fig. 2.2); and could be few in number such as in

25

home systems, or could be in thousands such as in forest monitoring distribution. WSN is

typically a data-centric system, with all nodes primarily performing the function of sensing and

gathering ambient physical data; hence, the requirement for IP-addressing type of procedures is

unimportant in its topology configuration. However, locational awareness is vital at each node

for the purposes of gathering data from the physical area of placement as well as for relaying

data items along geographically determined next-hop neighbourliness route toward some

specified base station or destination.

Figure 2.2: WSN configuration [46]

In military deployments, WSN provides utility such as the detection of troops’ movements,

identification of enemy positions, etc., while in environmental deployments, physical conditions

such as temperature and pressure data can be continually sensed and logged. The possibility of

having vehicles equipped with sensor units to harvest and disseminate road traffic data for safety

26

and flow efficiency management is being envisioned as a better and cheaper way of doing

business by the automotive sectors [6][48][49].

WSN routing protocol schemes involve using methods such as flooding and gossiping in data

dissemination; as well as employing multi-hop data forwarding strategies that includes

combinations of flat, hierarchical and location-based designs (Fig. 2.3). These routing schemes

are respectively exemplified by some standard routing protocols, including SPIN, LEACH and

GEAR that are described below. The effectiveness of multi-hop location-based routing in WSN

deployments has thus influenced the adoption of this approach in VANET routing protocol

designs [15][16][14].

 Figure 2.3: WSN hierarchical design [50]

27

2.1.3.1 Flooding and Gossiping - Data dissemination methods

Flooding is a basic method of transmitting or disseminating messages in a network by requiring

every node receiving the message to also broadcast it to all its 1-hop neighbors irrespective of

whether the neighbor had already received the same data or not; but only the concerned node(s)

acknowledge such message while others may further broadcast or discard it. The drawbacks

associated with flooding include the problems of implosion and overlap as depicted in Fig. 2.4.

Moreover, flooding is fraught with resource blindness, i.e. uncontrolled power resource

consumption [51], which is particularly undesirable for WSN nodes that have their lifespan

dependent on their respective battery’s lifetime.

 (a) (b)

Figure 2.4 (a): The implosion problem – multiple sources (i.e. B and C) forward same data copies to a common one-

hop neighbor (D), which is not necessary.

Figure 2.4 (b): Overlap problem– same data copies, covering an overlapping geographic zone (r), forwarded to

neighbor (C) by multiple sources (i.e. A and B).

Figure 2.4: Flooding drawbacks [51]

The gossiping approach attempts to curtail implosion caused through simplistic flooding by

making any forwarding node to transmit to only one randomly picked next-hop neighbour; but

all nodes eventually receive the message. This method has the disadvantage of data propagation

delay.

28

Flooding (and gossiping) message propagation method have been applied in some standard ad-

hoc routing protocols in their route discovery schemes,including Ad-Hoc On-Demand Vector

(AODV) and Dynamic Source Routing (DSR) protocols that we discuss in section 2.1.4; but

these protocols are not efficient in VANET environments.

2.1.3.2 SPIN and DD – Flat WSN protocols

Sensor Protocols for Information via Negotiation (SPIN), an early data-centric routing design, is

a family of flat protocols [52][51][46]. SPIN variants include SPIN-1, SPIN-2, SPIN-BC, SPIN-

PP, SPIN-EC and SPIN-RL; with each type bearing some optimization according to some

specified requirements such as energy conservation concern in SPIN-EC. The principal features

in the SPIN protocols are (1) data negotiation among nodes before transmission to avoid

duplications, and (2) nodes’ allocation to routing tasks depending on their available energy

levels. Nodes that have data to broadcast advertise such intent through a short ADV metadata

message. If a recipient does not already have the advertised data then it makes a request with a

REQ message, and subsequently receives the DATA message. Directed Diffusion (DD) [46] is

also a flat WSN protocol, which however serves better in large networks where it guides data

harvesting queries to only those nodes that are located around the phenomenon of interest.

Moreover in DD, the data from multiple sources are consolidated en-route the reverse path (Fig.

2.5) to the query source [46]. Most user applications that are being developed for VANET

traffic safety and efficiency management are essentially data-centric [3], and could benefit from

the SPIN and DD methods.

29

Figure 2.5: Directed Diffusion routing method [50]

2.1.3.3 LEACH – A Hierarchical WSN protocol

Low Energy Adaptive Clustering Hierarchy (LEACH) [53][46][52][51] protocol is a WSN

hierarchical protocol type; where the network dynamically partitions into cluster regions of

nodes for specified local data gathering tasks, and long range data transmission tasks are

assigned to cluster heads. LEACH operates in rounds of two alternating phases: set up or cluster

formation and steady state or data gathering. At the beginning of the set-up phase, a k number of

random nodes elects themselves to be cluster heads using a probability algorithm that also

supports rotational distribution of the role. The cluster heads then advertise themselves, so that

each of the other free nodes can choose which cluster to join; and a node joins the one from

where it receives the highest transmission signal supposing it to be the nearest. The LEACH

steady state phase involves the aggregation and fusion of data by each cluster head for

forwarding to the base station. Some VANET routing protocol designs utilize the cluster and

hierarchical schemes, e.g. BROADCOMM and COIN, however much overhead is involved

[54].

30

2.1.3.4 GEAR – A Location-based WSN protocol

Geographical and Energy Aware Routing (GEAR) [46][51] is a location-based routing protocol

design for WSN. It uses geographical location and energy-content level information about nodes

to make packets forwarding decisions. The idea is similar to that of Directed Diffusion

described in section 2.1.3.2, that guides interests query to only the relevant region of the WSN

area. The protocol uses heuristics that maintains some closeness cost (learned or estimated) at

each node, based on the energy level and geographical distance of the node to any defined region

R. A node that receives a packet for forwarding toward R makes a greedy selection of the next-

hop based on the cost values. When within the target region boundary, the packet forwarding

process can engage restricted flooding or recursive geographic forwarding methods. Greedy

forwarding towards some geographic region is a method that has likewise been employed in

some MANET routing protocol designs, e.g LAR [23]. Whereas GEAR uses additional

information on available energy levels to supplement greedy forwarding choices, some VANET

designs such as DREAM [55] use values including vehicle velocity and traffic density.

2.1.4 Basic MANET routing protocols

Interest and research in Mobile Ad-hoc Networks (MANET) of portable user devices (Fig. 2.6)

predated the development of ad-hoc WSN; with routing protocols that were designed for the

former already in place by the early 1980s, while the latter sprung up during the 2000s [41][56].

Initial MANET successful applications was in military tactical networks, for example in

battlefield communications; but the increasing availability of enabling technologies, such as

IEEE 802.11n and Bluetooth that are now being embedded in pervasive mobile devices is

bringing about resurgence of interest in MANET [41][43]. Other areas of MANET applications

include networking in disaster situations, where existing infrastructure might have been damaged

[43].

31

Figure 2.6: A MANET of mobile user devices

An important feature in MANET routing protocols’ design is their location-awareness and

support for mobile connectivity of nodes, albeit minimal, as devices can roam within some

applicable transmission range. MANET has the following general characteristics and routing

protocols’ design goals [41][57].

MANET characteristics:

 Nodes density of 10-100

 Nodes mobility

 Varying network topology

 Limited bandwidth

 Limited power resource – as in battery operated devices

MANET routing protocols design goals:

 Geographic topology awareness

 Dynamic multi-hop packets forwarding capability

 Minimal routing overhead

 Loop prevention

32

In the following sections, we describe important features of some representative MANET

protocols.

2.1.4.1 DSDV – A DV proactive MANET protocol

Destination-Sequenced Distance-Vector (DSDV) [58] protocol is an adaptation of the Distance

Vector (DV) routing method that addresses the problems of looping and count-to-infinity to

make it suitable for MANET through tagging each broadcast advertisement of routes’ map with

a sequence number so that receiving nodes may choose only the freshest entries [43][58].

DSDV was principally developed with mobile PCs in mind, where the number of participating

nodes as well as their movements is moderate. Although DSDV is simple to implement, it

generates very high control overhead, making it even unsuitable for VANET where frequent

topology changes would accentuate the routing tables’ maintenance overhead.

2.1.4.2 OLSR – An LS proactive MANET protocol

Optimised Link-State Routing (OLSR) [59] is an optimization of the Link-State (LS) routing

method for reduced overhead in ad-hoc networks, through the introduction of Multi-Point Relays

(MPRs). Each node in OLSR chooses a subset of nodes as MPRs from among its one-hop

neighbours (Fig. 2.7). When a node broadcasts a message, only its MPRs can rebroadcast it to

their respective next-hops, thus lessening flooding. Moreover, an LS broadcast of connectivity

by a node has contents list only of the neighbours that have selected it as MPR, which also

lessens message size [59][41][43]. OLSR works efficiently in dense networks, and it has been

tested in VANET [60][61] where however constant topology changes makes it unsuitable as it

affects the routing tables’ maintenance [14].

33

Figure 2.7: MPR scheme [59]

2.1.4.3 DSR – A reactive MANET protocol

Dynamic Source Routing (DSR) [12] is a reactive protocol where route discovery is performed

on-demand, which although incurs some latency penalty. A source node broadcasts a RREQ

that cites a destination if it does not already have relevant current routing map to that destination.

The DSR route request message RREQ is flooded over the network from source S, and when a

destination D or a node that has record of route to D receives the RREQ, it replies S with a

RREP message containing route information from S to D. The RREP may be piggy-backed on

an RREQ in the opposite direction, or the reverse path may just be defined as the routing path.

The route map is subsequently embedded in packets by the source, and it is possible to assign

varied paths to different data packets. DSR works well where nodes’ movement is mild;

otherwise its performance degrades fast, which makes it unsuitable for the VANET environment

[62][63]. An important supplemental feature of DSR is route caching whereby every node

listens in active promiscuous mode to network traffic so as to continually make updates of their

routing tables accordingly, consequently minimizing future route discovery efforts.

34

2.1.4.4 AODV – A reactive MANET protocol

Ad-Hoc On-Demand Vector (AODV) routing protocol [11] is an extension of DSDV, using

sequence numbering on its RREQ broadcasts as a mechanism to prevent looping. Each node in

AODV maintains next-hop neighbour list as well as routing maps. A node that wants to send

packets instantiates route discovery request if it does not already have the relevant map. In

similarity to DSR’s on-demand route discovery approach, AODV broadcasts RREQ while the

corresponding RREP is unicast from the destination or some intermediate node that can provide

route information that is current. However, packet headers in AODV do not hold route map;

instead, reverse pointer links are set up for the routing path during the RREQ/RREP traversals

(Fig. 2.8) through records kept by each hop. Tests of AODV in VANET show that it performs

fairly well when conditions of node density and network size is moderate [14][54].

Figure 2.8a: AODV Reverse path Figure 2.8b: AODV Forward path formation

 Figure 2.8: AODV routing [11]

2.1.4.5 ZRP – A hybrid MANET protocol

Zone Routing Protocol (ZRP) [64] is a method that attempts to exploit the good features of both

the proactive and reactive routing behaviours, using a hierarchical structure. In ZRP, a protocol

such as proactive DSDV is utilised to perform intra-zone routing within a radius of k (k≥1) hops

around every node that has to function at any time as source or forwarding node. When a

35

destination is beyond a local zone, reactive route discovery method such as in DSR is engaged to

perform inter-zone routing through bordercasting; which involves choosing the next-hop at the

periphery of radius k of the forwarding node. Generally, structure-based protocols such as ZRP

are scalable and bandwidth efficient; but they are inappropriate in VANET where the topological

structure is unstable [45]. Furthermore for larger sized zones, such as is typical in VANET, the

proactive routing part fails fast [65].

2.1.4.6 GPSR – A location-based MANET protocol

Greedy Perimeter Stateless Routing (GPSR) [21] is a protocol design where the nodes maintain

location-awareness through the use of beaconing services, and the destination is determined

using services such as GPS. Packets hold a target destination’s co-ordinates information in their

headers, which is used at intermediate hops to direct routing. A forwarding node determines the

next-hop by choosing the neighbour that is geographically closest to the destination. If no next-

hop neighbour is closer to the destination than a forwarding node, then a void is said to exist

(Fig. 2.9); at which stage the algorithm switches temporarily to its perimeter-forwarding mode.

The perimeter forwarding method involves dynamically constructing a planar graph of the nodes

surrounding the void region, and uses the right-hand rule to effect a face traversal for packets

forwarding around the edges of the void. In Fig. 2.9, node x is the point where packets go into

the perimeter mode toward D, with routing winding through xwvD; after which greedy

forwarding may be resumed if D is not the final destination. As of 2002, GPSR became a

benchmark in VANET routing protocols’ research [14][66]; whereas it was originally designed

with general MANET situations in mind. This position of GPSR seems to be waning however,

due to the evolvement of VANET routing designs that incorporate other essential protocol

characteristics such as delay-tolerance and road network overlay prospects [14].

36

Figure 2.9: GPSR void repair strategy [21]

2.1.4.7 GPCR – A location-based VANET protocol

The Greedy Perimeter Coordinator Routing (GPCR) [67] protocol attempts to simplify GPSR’s

planarization and repair technique by the observation that in environments such as VANET,

adjacent streets and junctions around a void area form a natural planar graph. Thus from a point

where greedy forwarding fails, packets could be forwarded by routing along adjacent streets and

junctions towards the final destination street. The depiction in Fig. 2.10 shows that a greedy

forwarding void occurs in the separation between nodes S and D; consequently, the repair

strategy performs the routing through coordinator nodes C1 and C2. GPCR exhibits increased

packets delivery rate when compared to GPSR, however it does not address voids that are due to

sparseness of nodes rather than street obstacles.

37

Figure 2.10: GPCR repair strategy [67]

The various MANET protocol types described above are mostly unsuitable for the rapidly

transforming VANET topology type; consequently, researchers are looking for solutions that can

satisfy the VANET add-on requirements.

2.2 Requirements issues in VANET routing protocol design

Generally, the goal of routing involves the effective transmission of data packets over a network

of multiple intermediate nodes, through the use of methods that entail minimal delay and low

overhead costs while achieving maximal throughput [54]. The VANET multi-hop routing

protocol design therefore requires some particular considerations to be able to achieve the

following general routing objectives [13].

 Low communication overhead

A low overhead in routing costs is desirable for achieving maximal data throughput. However,

the costs heighten in VANET if the conventional routing procedures such as is in the proactive

routing-tables’ maintenance are implemented. Also note that the wireless media, that is generic

in VANET, has a narrower bandwidth [57] in comparison to the wireline type.

38

 Low communication delay

Real-time systems in particular require very low communication delay. Low latency will be a

requirement in core VANET vehicle-to-vehicle communications; for example, a system that has

to communicate some imminent auto-crash event has hard delay constraints [54][4]. Hence, the

adoption of the reactive and on-demand routing option that is inherently fraught with packets

dispatch delay remains an integral issue in VANET.

The VANET environment is further characterised by the following effects [54]:

 High mobility rate of vehicular nodes

The rapidity of nodes’ movements makes the link-lifetime of any communicating pair in

VANET to last only a few seconds. For example, for some adjacent vehicles on a highway that

are travelling by-passing each other at 100 km/h and with a radio transmitting range of 250m,

the link between any pair can last at most 10 seconds [54][14]. Consequently, the applicable

routing protocol designs must support lightweight algorithms with fast data transfer capacity.

 Rapidly changing topology and partitioning linkage

Continuous vehicular mobility leads to constant repositioning of nodes within the VANET

environment, resulting in rapidly transforming topology as well as frequent linkage partitioning;

therefore establishing a dedicated connectivity is practically infeasible in such an unstable

condition. Furthermore, VANET is disposed to the arbitrary entry and exit of nodes, its

unbounded network size, and its temporal cum district-level traffic density variations.

39

 Road structures and obstructions to wireless radio

Vehicular traffic runs on underlying road topography that consists of patterned highways, streets,

intersections, traffic lights, etc.; all of which influence mobility. The aforementioned features

are required in the faithful modeling of the VANET environment [14][40]. Furthermore in

urban situations, tall buildings, trees and other structures such as bigger vehicles constitute

interferences to wireless communication signals, and should be well characterized in the

VANET data propagation modeling [13][14][54].

2.3 Directions in VANET routing protocol designs

Fig. 2.11 shows taxonomy of VANET routing protocols, which however is non-exhaustive; but

it provides a general view of its designs, categorizations and trends. In this section we discuss

the taxonomy as well as provide an overview on the emergent geographic forwarding approach.

Figure 2.11: Taxonomy of VANET routing protocols [14]

40

2.3.1 Position-based vs Topology-based classification

The initial approaches to VANET routing protocol designs had involved applying adaptations of

topology-based MANET protocols, which are classed as proactive or reactive. The nodes in

proactive protocols maintain the map of an entire network segment in routing tables through

periodic updates; and are most suitable where the topology rarely changes. Frequent topology

changes, as in VANET, exacerbate tables updating and maintenance overhead. Reactive

protocols on the other hand do not maintain routing tables as they perform route discovery only

on demand; although this introduces some forwarding latency. In Fig. 2.11, the topology-based

Ad-hoc On Demand Vector + Preferred Group Broadcast (AODV+PGB) and the position-based

Greedy Perimeter Stateless Routing + Advanced Greedy Forwarding (GPSR+AGF) are

adaptations for the VANET environment [68]. Basic AODV and GPSR have been described in

section 1.1.4. Other types of AODV enhancements for VANET that are not shown in the figure

include BAODV, AOMDV, and SD-AOMDV [65]. Despite these adaptations however, the

topology-based ones have still been proved unsuitable for VANET; but the research community

is honing on the geographic routing methods, which have demonstrated promising performances

[69][70][22].

2.3.2 Delay-tolerance classification

The classification in Fig. 2.11 of Delay-Tolerant Network (DTN) and non-DTN types is within

the location-based category. Delay-tolerance schemes allow packets to be buffered when

necessary, especially during forwarding link cuts pending when connectivity is regained

[71][2]]. The data-muling scheme further enables intentional vehicular-node carriage of

buffered message for delivery to some next-hop or destination. Such delay-bounded designs

may be with the aim of reducing bandwidth utilization when it will be tolerable to partly carry-

and-forward data in non-realtime systems, e.g. in email deliveries [3]. Vehicle-Assisted Data

41

Delivery (VADD) and GeoDTN+Nav are examples of DTN designs; however, this area has not

received much attention in VANET research.

2.3.3 Overlay vs non-overlay classification

The overlay characteristic of a routing protocol makes it to be aware of the underlying static road

network topography, as it incorporates such secondary information to supplement location-based

routing [14][69]. Overlay designs often engage forwarding packets along choice street corridors,

which typically involves non-trivial decision making algorithms when at road intersections. In

some cases Road-Side Units (RSU) backbone nodes are required to be installed at intersections

to aid overlay implementation, e.g. in the Urban Multi-hop Broadcast (UMB) protocol [54].

But such RSU installations can quickly scale to thousands in cities that have numerous junctions;

whereas an important aim for VANET advocacy is to eliminate the use of expensive and

obtrusive roadside infrastructures. Also, routing along intersections in cities with short intervals

between intersections may unnecessarily introduce delay in forwarding [20]. Nevertheless,

VANET routing protocol designs are increasingly utilizing some forms of overlay information

for forwarding strategy, particularly in urban environments.

2.3.4 Data dissemination classification

The sub-classification of VANET routing protocol designs showing unicast, multicast, geocast,

and broadcast routing approaches are described in details in [65][13][2][72].

42

Figure 2.12: Data Dissemination Methods [72]

Fig. 2.12(a) depicts a unicasting of some query to a remote coffee shop. Most VANET routing

protocol development efforts are unicast schemes where a source forwards packets to one

specific destination [65], including the V2V communication links.

Multicasting involves disseminating data from a source to a set of interest nodes that may need

same message copies. For example, information relating to roadblocks, accidents or other traffic

conditions could be multicast to forewarn vehicles that are heading toward such incidents. Most

multicast applications that are being designed for VANET require data dissemination within

some specified region, i.e. geocasting, and is often implemented through directed flooding [54].

In Fig. 2.12(b), the broken down vehicle multicasts (or geocasts) a warning message to those

vehicles currently traversing the incident zone. Traditional multicast routing schemes form trees

or mesh map of multicast members within the network (to circumvent the flooding approach).

VANET however does not support static routing structures, such as trees.

Broadcasting sometimes may be necessary for disseminating a message throughout an entire

VANET domain, such as in Fig. 2.12(c) showing an advertisement broadcast. To avoid the

43

broadcast storm problem however, efficient flooding designs for VANET have been proposed,

including the use of only select nodes to re-broadcast [54][2].

2.3.5 Geographic forwarding strategies

Strategies that are adopted for the hop-by-hop forwarding of packets in a network depends on

the dynamics of the environment. Three main packet forwarding strategies are identifiable for

the geographical or position-based VANET routing protocol designs; which are greedy

forwarding, restricted directional flooding, and hierarchical approaches [22][29]. In greedy

forwarding methods, the neighbor closest to the target destination is chosen at each hopping

stage; and this is popular in contemporary VANET routing protocol designs, which is a point of

our focus in latter sections. Restricted directional flooding is similar to greedy forwarding, only

that a forwarding node could select multiple next-hop neighbors to advance same data copy

toward the destination. Hierarchical approaches involve formation of clusters, whereby only

some elected heads take part in top-level forwarding, often with the aim of minimizing hop

counts that packets have to travel. There are other forwarding strategies in use apart from the

above-mentioned; for example the Mobility-Centric Data Dissemination for Vehicular Networks

(MDDV) [73] that involves opportunistic forwarding, which however is not necessarily a

geographic forwarding method.

2.3.6 Greedy failure recovery strategies

Greedy forwarding methods are quite suitable for handling forwarding in rapid mobility

environments; more so because nodes need only maintain the local positional information about

their immediate neighbours instead of keeping large routing tables [15]. However, greedy

algorithms are short-sighted methods that make series of locally optimal choices with the belief

44

to eventually achieve a globally optimum result; hence they are most ideal for problems

exhibiting optimal substructures [74]. A local maxima failure occurs by the existence of some

void area in an ad-hoc network, i.e. when no next-hop neighbour node exists that is closer to the

destination than the forwarding node itself (Fig. 2.13). Local maxima frequently can occur in

VANET because of network partition due to nodes’ mobility, underlying road connectivity

segmentation or obstructions to radio transmission in high-rise building areas. When a local

maxima situation occurs, greedy method fails to continue executing; hence a recovery method is

needed [14].

N
D?

v
 o

 i
 d

 a

 r
 e

 a

Figure 2.13: Greedy failure in the void area

The incidence of local maxima failure is yet an open problem in greedy routing research

[22][18]. An innovative attempt at dealing with this void region problem is found in the design

of Greedy Perimeter Stateless Routing (GPSR) protocol that dynamically constructs planar

graph of adjacent nodes for routing around the void (see section 2.1.4.6). Nevertheless,

planarization is only practicable when the relevant preconditions happen to hold, e.g. existence

of some chance pertinent pre-positioned nodes. Other planarization routing designs are found in

schemes such as Greedy-Face-Greedy (GFG) and Greedy Path Vector Face Routing (GPVFR)

designs [30]. GEDIR [30] is a greedy method that handles void by simply sending packets back

to the forwarding node to choose any other available alternative as next-hop; but excluding

45

previously visited dead-end nodes. Detailed discussion on planarization and other techniques for

routing around voids can be found in [30].

2.3.7 Packet swinging

The notion of packet swinging in greedy forwarding designs describes the situation where

hopping packet units chase a moving target destination node around in the network [20]. Packet

swinging is a design choice for the effective and accurate delivery of packets in the typically

unsettled VANET environments. The routing path that a packet (swinging) takes is computed

hop after hop to realize such effective forwarding in VANET [27] since any pre-computed path

should soon alter due to the instability of node positions. Both Vehicle-Assisted Data Delivery

(VADD) [27] and Greedy Traffic Aware Routing (GyTAR) [26] designs, shown in Fig 2.11

classifications, exhibit the hop-by-hop form of route computation. In GyTAR, every next-hop

junction as well as every next-hop node engages in computations that select the next packets

carrier. Its packet delivery ratio outperforms that of GSR and LAR that pre-computes their

entire routing path before forwarding commences. The authors of GSR [24], which is discussed

in section 2.4.1, also suggested the practice of computing next-hop link at each forwarding node

as an alternative to stuffing packet header with routing map. We therefore conjecture that real

dynamic approaches, such as packet swinging, are required for successful routing in VANET.

“Devising protocols for VANET may not be successfully accomplished by simple adaptation of

protocols designed for wired networks and Mobile Ad hoc Networks” [75]. So far, the Internet

Engineering Task Force (IETF) has not proposed any particular VANET routing protocol design

as a de facto standard; however, some directions are emerging as location-based greedy

forwarding approach is dominating the design forms.

46

2.4 Models of greedy location-aware routing protocols

Greedy forwarding is widely recommended as an efficient method for routing in VANET [22];

while its applicable computations for selecting next-hop options receives applaud for being

simple and fast [76]. Several VANET routing designs use the Dijkstra’s greedy algorithm for

forwarding, which has the policy of successively selecting the node closest to the destination at

every hop. In this section, we expatiate on greedy routing protocols.

2.4.1 GSR - Geographic Source Routing

Geographic Source Routing (GSR) [24][15] is an early VANET position-based routing protocol

design that uses static road topology map as a supplement for geographically forwarding packets

along streets ‘where inherently there are no obstacles’, i.e. the circumventing of voids that may

require perimeter routing as in GPSR. GSR routing plan engages Dijkstra’s algorithm to

compute the sequence of road junctions that packets have to traverse from source to destination

and the route map inserted in packets’ headers accordingly. The header-mapping approach has

been criticised as bandwidth consuming, as it necessitates excessive overhead; moreover,

packets dropping occur along those pre-computed streets paths with unforeseen sparse traffic

[15]. Evaluation of GSR shows that it performs better than the native MANET topology-based

protocols of AODV (Ad-hoc On-Demand Vector) and DSR (Dynamic Source Routing).

2.4.2 SAR - Spatially Aware Packet Routing

Spatially Aware Packet Routing (SAR) [77] protocol is a position-based and street-aware design

with goals similar to GSR, i.e. a scheme to improve GPSR perimeter design by methods that

rather proactively routes around holes or voids. SAR assumes global spatial awareness using

GIS digital maps to identify areas of permanent local maxima or voids on the road topography.

47

In Fig. 2.14, an example of a permanent void or hole exists between terminal areas C and E.

Considering the basic geographic forwarding scheme, if node S wishes to send packets to node

D, it could choose node A as the next hop, which eventually leads to a local maxima at C; but the

SAR routing scheme would foresee this static void area and rather choose B as the next-hop.

SAR suffers the drawback of high packet overhead due to large header mapping.

Figure 2.14: SAR’s use of spatial awareness for geographic forwarding [77]

2.4.3 A-STAR - Anchor-based Street and Traffic Aware Routing

Anchor-based Street and Traffic Aware Routing (A-STAR) [25] is a position-based routing

protocol that is designed for V2V communication in city environments. Its authors suggest that

the basic greedy forwarding method is not suitable for city environments where there are high-

rise buildings that pose as radio transmission obstacles; hence, in addition to location awareness,

the protocol assumes street as well as traffic awareness.

In A-STAR, statistically rated maps describing regular city bus routes and dynamically rated

maps of real time traffic information provide knowledge about streets with current vehicular

connectivity. As like in GSR, A-STAR computes end-to-end routing path of sequence of

48

junctions, called anchors; and it forwards packets greedily between anchor points. If it

encounters a local maxima, the protocol’s recovery strategy generates a temporal “out of

service” message for that path, while it dynamically computes an alternative pathway for re-

routing the packets. The salvaged packets would piggyback the out of service message for

broadcast to the rest of the network to put such path temporarily out of use. A-STAR evaluation

shows an accomplishment of 40% more packets delivery rate than GSR, and exhibits a better

performance over GPSR. Its disadvantage lies in high packet overhead of junctions listing,

which can quickly scale in city settings with numerous junctions.

2.4.4 VADD - Vehicle-Assisted Data Delivery

Vehicle-Assisted Data Delivery (VADD)[27][28] is a geographic packet forwarding scheme

which incorporates the DTN (Delay Tolerant Network) feature. VADD uses the knowledge of

predicable nature of vehicular mobility on roads, street topography, as well as prevailing traffic

statistics, including nodes density and speeds; that are obtainable from installed on-board

devices such as MapMechanics or Yahoo Smart View. The scheme evaluates and chooses

streets’ path that offer minimum packet delivery delay. Within the scheme, it implements the

DTN carry and forward model with three modes of operation among which a packet carrier

switches depending on its location: straightway, intersection, or destination. Along straightway

stretch of streets it forwards packets using the greedy method, but when that fails, the carrier

retains the packets until when in contact with an appropriate next-hop. Intersection decisions are

quite involving, requiring non-trivial system of linear equations’ calculations to select the most

appropriate next-hop node that is heading in a promising direction.

In general, VADD outperforms Epidemic [78], which is also a DTN opportunistic forwarding

routing protocol. It outperforms DSR and GPSR in packet delivery rate, delay rate, and

49

overhead metrics in both sparse and relatively dense networks. There is the need for more study

on sparse VANET environments, such as VADD addresses.

2.4.5 GyTAR - Greedy Traffic Aware Routing

Greedy Traffic Aware Routing (GyTAR) [26] aims to address routing in city environments,

using street and junction-based forwarding, similar to A-STAR. GyTAR routing path is

however dynamically determined at every forwarding junction and at every intermediate node.

GyTAR assumes existence of location services that provide on-board information to each

forwarding node regarding the current geographical position of the destination node, positions of

neighbouring intersections, traffic density between intersections, distances between

intersections, and speed plus direction of movement of neighbouring nodes. The neighbouring

vehicles’ speed and direction of movement data is to be gathered using hello beacon messages.

In forwarding between intersections, an ‘improved’ greedy method that uses speeds and

directions information chooses next-hop based on forecasted positions. A next-hop choice is

determined at computation time t1 to be the node that is predicted to be closest to the next

intersection by the forwarding time t2 (t2 > t1). The route from the current junction to the next is

similarly determined on the fly based on distances and traffic densities, with the best way being

one with dense traffic and next junction being the one that is geographically closest to the

destination.

GyTAR exhibits significant performance improvement in terms of packets delivery ratio and

end-to-end delay when compared to GSR and LAR [23]; but it is criticized for excessive

computation and communication overhead [20].

50

2.4.6 GLAR - Greedy Location-Aided Routing

The Greedy Location-Aided Routing (GLAR) protocol [19] is an improvement on the LAR [23]

design; both of which primarily implement route discovery and packets’ header mapping in

MANET. These protocols in their operation initially establish the locations of the source and

destination nodes using GPS. They further acquire the destination node’s velocity and time

values for use in calculating search zone perimeters. The request zone (rectangular area) as

shown in Fig. 2.15 isolates the potential next-hops’ region, while the expected zone (circular area

around D) defines where D may be reached even if it shifts position. The goal in LAR is to

reduce overhead in route discovery by using the directed flooding method. GLAR improves

LAR by employing the baseline mechanism, which is a computed virtual straight-line from the

source to the destination; and the equation of the straight line is used to reference it. In Fig.

2.15, route discovery goes closely along the baseline that joins the source node S to the

destination node D. The choice of each next-hop in the direction of the destination evaluates the

greedy measures as well as the values of being closest in distance to the baseline. GLAR

achieved better connection lifetime and packets delivery rate with reduced control overhead.

Figure 2.15: Route discovery baseline in the GLAR scheme [19]

51

In this study we use some of the GLAR protocol concepts within the A* algorithm method to

design an alternative geographic packets forwarding module, which is comparable to the basic

Greedy method that several VANET routing protocol designs have employed.

2.4.7 HLAR - Hybrid Location-based Ad-hoc Routing

Hybrid Location-based Ad-hoc Routing (HLAR) [17] is a routing protocol that is non-trivial in

its complexity. The hybrid aspect of the protocol is that it combines principles of reactive

routing with that of geographic routing. HLAR, among other purposes, aims to provide for a

recovery mechanism when link breakage or void occurs during geographic greedy forwarding of

packets. Normally an HLAR source node will use routing information that has been constructed

in an AODV (Ad-hoc On-Demand Vector) [11] reactive manner to forward packets to the

intended destination. However if route information becomes lacking at any forwarding node, it

utilizes the geographic greedy method to continue packets’ advancement. Moreover, if it

encounters the greedy forwarding void, it engages the AODV’s type of RREQ flooding in search

of such neighbours that may have route information to the destination. According to its authors,

HLAR is deployable in different kinds of VANET environments while it incurs lesser overhead

when compared to other topology-based and location-based designs.

In this section, we have reviewed some position-based greedy forwarding routing protocol

designs for VANET. There are protocol designs that explicitly provide mechanism for

recovering from voids, while some pre-emptively sidetrack structural obstructions. In addition

to the use of location information, most designs now use extra knowledge, such as street map

and traffic density, to supplement geographic greedy forwarding decisions. In the next section,

we focus on the greedy forwarding techniques used in MANET/VANET protocol designs.

52

2.5 Geographic greedy forwarding techniques in MANET/VANET

VANET position-based greedy forwarding designs that use geographic location information

generally work under three basic assumptions [30][22], which are:

 Each node knows its own position’s coordinates

 Each node is aware of its immediate neighbours’ positions

 The destination position is known

The information over these assumptions may be provided by GPS, beacon messaging, or some

other services such as cellular network detecting as proposed in [79]. The greedy forwarding

techniques under discussion are applicable generally in MANET/VANET environments

depending upon goals such as minimizing energy consumption or minimizing total distance

travel to destinations. Figs. 2.16 and 2.17 depict these techniques with a routing plan from

source node S to the destination node D. Node S may also be viewed as any forwarding node,

with the circle as its transmission range. The roles of the other nodes are explained in the

following subsections.

Figure 2.16: Variants of greedy forwarding [30]

53

Figure 2.17: Greedy forwarding projections of MFR and NFP on the line SD [31]

2.5.1 Most Forward within Radius (MFR)

The Most Forward within Radius (MFR) [31] greedy technique chooses the node with the most

forwarding progress towards the destination as the next-hop. MFR (Fig. 2.16) does not

necessarily select next-hop with minimal distance to D, but achieves maximal forward progress

from S towards D along the straight line SD. In Fig. 2.17, A′ is a projection of node A unto line

SD, and it shows farthest progress from S when compared to similar projection for nodes C and

B. Benefits of the MFR method are that it minimizes the number of hops to be traversed towards

D and is loop-free [22][31].

2.5.2 Nearest with Forward Progress (NFP)

The use of Nearest with Forward Progress (NFP) [31] greedy technique goes together with the

condition of adjustable radio transmission range, and it aims at energy efficiency by choosing

closest next-hop neighbor with progress towards D (Fig.2.16). This approach has high

probability of minimizing collisions in the network [22][30]. In Fig. 2.17, C is the NFP node

when projected unto line SD. NFP is mainly used in WSNs where energy management is an

54

important issue. But [80] suggests an advantage of its use in networks with changing topologies,

such as VANET, when concern is to reduce transmission collisions.

2.5.3 Greedy

The basic Greedy [31][30] forwarding technique chooses next-hop neighbour having least

distance to the destination at each hop. Greedy (in Fig.2.16) is described as being quite suitable

for large and dense network with frequent topology changes because its algorithm is simple and

localized [31]; making it quite suitable for typical VANET settings. Greedy is also loop-free. In

Fig. 2.18, Greedy and A* techniques’ difference is described; where greedy next-hop choice

from the forwarding node S would be node B because it is closest to the destination D; A* on the

other hand would choose next-hop as node A because the distance SAD (i.e. SA + AD) is shorter

than distance SBD.

S
DA

B

A* chooses next-hop node A:

SAD distance is less than SBD

Greedy chooses next-hop node B:

node B is closest to D

Figure 2.18: Comparison of Greedy and A* schemes

2.5.4 Nearest Closer (NC)

The Nearest Closer (NC) [30][31] technique chooses next-hop that is closest in distance to the

forwarding node rather than to the destination node. Fig. 2.16 shows the NC node. NC

55

addresses MANET power and energy cost savings concerns [81]; which although are regarded

as trivial or no issues in VANET.

2.5.5 Compass Routing (CR)

The Compass Routing (CR) [30][31][82] technique aims at minimizing the total spatial distance

a packet travels from source to destination, by choosing as next-hop those intermediate nodes

that have minimum angular separation to line SD at each stage (Fig.2.16). In Fig. 2.17, ∠CSD is

the minimum; hence, node C would be the CR’s next-hop choice here. Fig. 2.19 compares CR

to the GLAR [19] routing protocol’s method that was described in section 2.4.6, which chooses

next-hop greedily a node that is also closest to the baseline. Where CR would choose node B,

the GLAR’s choice would be node A since this is closest to line SD; notwithstanding the equality

of ∠ASD and ∠CSD. Generally, CR ensures that packets routing goes closely in the direction of

the destination; but not necessarily along the shortest path. CR is not loop-free [30].

S
D

A B

GLAR chooses next-hop node A:

closest to baseline SD

Compass Routing chooses next-hop node B:

least angle Ɵ and closest to D
C

Ɵ

Figure 2.19: Comparison of Compass Routing and GLAR algorithms

2.6 A depiction of greedy forwarding techniques

The greedy forwarding techniques described in the previous section have been mostly developed

for utility in ad-hoc networks and are applicable depending on the concerns being addressed in a

56

network, such as the use of NFP to minimize transmission energy consumption. Fig. 2.20

describes the paths that some of the different greedy techniques would follow, going from S and

D, in making next-hop selections in the given static graph [31]. The shortest path coincides

with the A* algorithm path, for which it is renowned [32] as the choice method for finding

optimally shortest travel distance.

Greedy: S-C-U-F-I-N-D

MFR: S-C-U-F-I-M-D

CR: S-T-E-G-I-N-D

NC: S-B-C-U-F-H-I-N-D

NFP: S-T-E-G-J-K-L-M-D

Shortest Path: S-T-G-I-N-D

GLAR: S-T-E-I-G-I-N-D

A*: S-T-G-I-N-D

Figure 2.20: Path selections with different greedy algorithms (adapted from [31])

The MFR, CR, and Greedy techniques are further amenable to designs that reduce hop-count by

the capability to forward packets over two (or more) hops [30], albeit with increased overhead.

Table 2.1 shows comparison of A* technique in VANET environment with the other greedy

techniques.

57

Table 2.1: Comparison of existing greedy forwarding techniques with the A* technique

Technique Approach Technique contrast with A* approach in

VANET

Most Forward within

Radius (MFR)

Achieves maximal forward progress to

the next- hop. Reduces total hop-count.

A* achieves globally optimal shortest path.

Minimizes the total distance travelled.

Nearest with Forward

Progress (NFP)

NFP aims at transmission energy

efficiency by choosing next-hop that is

closest, but with forward progress.

Energy rationing not an issue in VANET,

hence A* method is agreeable in it.

Greedy basic Greedy chooses next-hop neighbour

closest to the destination at each stage.

A* chooses least distance coverage from

currently forwarding node, through the next-

hop, to the destination at each stage.

Compass Routing (CR) CR technique aims at forwarding closely

in the direction of the destination, and

minimizing the spatial distance a packet

travels.

A* chooses path and direction that results in

optimally shortest path from source to

destination.

Nearest Closer (NC) NC chooses next-hop that is closest in

distance to the forwarding node, with the

aim of minimal energy consumption at

each hop

Energy rationing is not an issue in VANET;

hence A* method is appropriate in it.

In general by using any one of the techniques, the next-hop chosen shall always be with progress

further from the forwarding node and closer toward the destination at each hop. This can be

represented by the following greedy algorithm.

 choose next-hop as node that is closer to the destination (using some heuristic measure h)

A heuristic h(n) is defined as admissible if for every node n, h(n) ≤ h*(n).

h(n) is the estimated cost to reach the goal

h*(n) is the actual cost to reach the goal

The straight-line distance measure is admissible in the heuristic of each of the above-mentioned

techniques, including the A* algorithm.

58

The A* function f(n) = g(n) + h(n), an extension of Dijkstra’s greedy algorithm, uses the best-

first search method to find the least cost path from a start node to a target node on a given terrain

map [74]. We discuss the A* forwarding approach next.

2.7 The A* algorithm method

We state the following regarding the A* algorithm in a VANET type of scenario:

If h(n) is the estimated linear distance from any node n to the destination,

And if h*(n) is the actual optimally achievable hopping distance, which may be non-linear from

n to the destination,

Let g(n) be the true distance from the source to node n.

The A* search function is defined as f(n) = g(n) + h(n); h(n) = 0 if n is the destination.

The A* algorithm is popular for solving optimal path problems over marked terrains. The

popularity of A* derives not only due to its efficiency in path finding, but also its adaptability

and extensibility to different domains of search problems [33][34]. It has been engaged in

robotics, networks, biology, database systems and games [33][34]. An example is the Multi-

Agent A* (MAA*) [83] algorithm for solving decentralized partially-observable Markov

decision problems. MAA* computes optimal plans for a cooperative group of agents that

operate in stochastic environments such as multi-robot coordination, network traffic control, or

distributed resource allocation. The algorithm uses heuristic probability factors and

decentralized control theory functions in its A* enhanced form. Another example is in ITS

systems where A* methodology has been applied to time-dependent shortest path problem in

dynamic networks, e.g. for the computation of fastest path to guide truck drivers on routes that

minimize travel time [84][35]. Road traffic conditions such as traffic density, speed of travel,

59

geographic obstacles, etc. are factored as heuristics into the A* algorithm to process the shortest

path. A* refines path-search in ways that make it to outperform the generalized Dijkstra’s

algorithm [35]; and its variants implement search strategies that is effective and adaptable

[33][32]. Although the Djikstra’s greedy algorithm has been commonly applied in routing

methods, yet our literature review did not reveal any specific case where A* has been tested in

the VANET environment type. Therefore this study would also verify the effectiveness of A*

path search over the terrain of non-static grids.

2.8 VANET simulation

The use of simulation tools in data communication networks study is a matured practice [14];

however the development of MANET simulation is yet budding [43]. Especially, VANET

simulation methods and tools are still in the formation stages and are yet unstandardized across

the research arena; hence researchers have enunciated the importance of faithfully representing

the complexities of its environment with valid modelling [85].

The simulation option has been widely adopted in VANET research as against analytical or real-

life test-bed experiments. The problem with the analytical approach to VANET study is the

intricate level of complex mathematical equations, assumptions, and parameters that will be

involved in representing the multifarious interacting phenomenon in such an environment; much

of which are even yet to be well discerned [53][43][14]. Real-life experiments on the other hand

are resource intensive, very expensive and quite challenging to conduct or reproduce for

controlled studies [4][85]. Nevertheless there have been some limited test-bed evaluations

within projects that are supported by consortiums of auto industries and Intelligent Transport

Systems (ITS) departments, e.g. VII, CVIS and Car2Car [4]. The academia on its part is

promoting the development of appropriate VANET simulators, and these are fast evolving.

60

Fig. 2.21 describes a maturation timeline in VANET simulator development, showing that lately

the practice is to couple mobility simulator with network simulator to realise the VANET model.

There have existed matured communication network simulators as well as matured mobility

generators developed in the Computer Networking and the ITS communities respectively [86].

Thus, some authors have recommended the coupled use of these highly validated network and

mobility tools as a standard; however, their interoperability at the unsuited interfaces’ level has

been another challenge. On another hand, some authors have raised the objection that

conventional network simulators are not adequate for utilization in VANET due to the

extraneous effects that mobile transmitting-nodes exhibit; e.g. the Doppler effect that is inherent

in moving bodies, which should be incorporated at the level of radio channel modelling [39][85].

Hence, VANET simulation practice is yet imperfect, although there is substantial progress made.

Figure 2.21: Evolution of mobility modelling strategies and techniques in VANET research [87]

61

2.8.1 Mobility generation issues in VANET research

Fig. 2.21 shows the evolution of mobility generation and integration in the VANET network

simulation environment. In a recent study that polled realistic GPS traces of a few thousand cars

over Shanghai city and using the NS-2 network simulator, it was found that the routing protocols

Epidemic, AODV, GPSR, and MaxProp performed poorly under differing mobility

configurations with realistic modelling features such as vehicular density, traffic load, TTL,

transmission range, and propagation models [88][68]. The poor performance was attributed to

the uncovering of hidden realities of the VANET dynamics; and this adds to the doubts cast over

the efficacy of simulators formerly used and the validity of associated results that have been

reported in the VANET literature [43].

The initial and widely adopted mobility generation method (Fig. 2.21) in MANET was the

random waypoint model and its variants such as the random direction model; where every node

periodically changes location by randomly picking a velocity and a destination throughout the

simulation duration [89][85]. Johnson and Maltz [12] had used the Random Waypoint Packet

Level Network Simulator for evaluating the DSR (see section 2.1.4.3) routing protocol design.

Although this approach is effective for simulating MANET, it obviously does not portray

VANET mobility on traffic lanes realistically [90]. The VANET mobility strategy later

progressed to the practice of importing real trace files into the network simulation environment;

however, the parameters in these snap files are not disposed to manipulation. Subsequently, the

practice of coupling network simulator with mobility generator came up; which however is

bedevilled with the interface incompatibilities. The contemporary VANET simulator design

drive is aiming for a fully integrated system of the mobility generator and network simulator.

62

2.8.2 Mobility simulators

Fig. 2.22 shows the taxonomy of some simulation tools in use in the VANET community;

grouped as mobility generators, network simulators and integrated VANET simulators.

Proprietary software, such as TSIS-CORSIM, Daimler-Chrysler Farsi, VISSIM, QualNet and

OPNET are not included in this taxonomy as they have been difficult to procure for evaluation

[38]. Researchers have used diverse simulators to validate their work, which implies that the

relative quality of the published VANET routing protocol designs is not really known [14][57].

On the other hand it has been found that routing protocols’ evaluation outcomes depend heavily

on the mobility model used [68][37].

Figure 2.22: VANET simulators [38]

In the transportation science discipline, mobility is largely classified into two basic areas: the

macroscopic and the microscopic views [89][91]. Macroscopic model of mobility depicts mass

traffic features and effects, such as density, mean velocity, number of lanes, traffic lights, etc.

The microscopic mobility model on the other hand depicts discrete entities of vehicles,

describing characteristics such as position, acceleration, overtaking, driver behaviour, etc. Both

63

the macroscopic and microscopic models are significantly required in a VANET simulator

[38][89]. Generally, mobility modelling classification include the following [92]:

 Stochastic models (e.g. Random waypoint model)

 Traffic stream models

 Car-following models (e.g. Intelligent Driver model) – a car-to-car distance control

schema

 Flows-interaction models

We proceed to discuss some of the mobility generators shown in Fig. 2.22.

2.8.2.1 STreet RAndom Waypoint (STRAW)

STreet Random Waypoint (STRAW) [90][85][89] mobility simulator was developed in response

to the need for a VANET model that creates road topolography based on real imported TIGER

(Topologically Integrated Geographic Encoding and Referencing) street maps in the United

States region. STRAW implements the car-following model that depicts features such as street

lanes, intersections, stop signs, stoplights, and traffic congestions. Although it implements other

traffic control mechanisms such as acceleration and deceleration, yet it lacks the lane-changing

feature. STRAW works specifically in conjunction with the Jist/SWANS network simulator.

2.8.2.2 Simulation of Urban Mobility (SUMO)

Simulation of Urban Mobility (SUMO) generator is a powerful micro-mobility traffic simulator

with lane-changing features. It is portable on most operating systems, and have been popularly

used for VANET research [85][89], particularly in conjunction with the NS-2 traffic simulator.

SUMO is written in C++, and contains several extensions contributed by the user community. It

is designed to handle large environments of about 10000 streets, and can simulate traffic in

64

different parts of the world using the openstreetmap [38]. MObility model generator for

VEhicular networks (MOVE) is built on top of SUMO with enhanced user-friendly features and

adaptation to make it portable to some other network simulators [85].

2.8.2.3 VanetMobiSim

VanetMobiSim mobility generator is specifically designed for VANET simulation; based on

CanuMobiSim which is a flexible framework for MANET modelling [85][38]. It features macro

and micro characteristics including the Intelligent Driver Model and Mobility (IDM/MOBIL)

standard, with capacity for the management of traffic incidents. VanetMobiSim is written in

Java, and can produce mobility traces in various formats for different network simulators,

including NS-2, GloMoSim, and QualNet. However it does not regenerate feedback effects,

which severely limits its use in realistic VANET simulation [4]. Regrettably also the detail of its

implementation is not open, while its development has been discontinued.

2.8.3 Network simulators

The following network simulators are some of the most widely used among the MANET and

VANET communities [85].

NS-2

The NS-2, a hitherto widely used network simulator [85][89] has been replaced with NS-3, albeit

with no backward compatibility. However, the newly introduced NS-3 lacks ready support for

wireless ad-hoc networks, and is difficult to learn and use compared to the GUI-based simulators

[93]. NS-2 is written in C++ and Tcl as a modular discrete-event simulator, which has acquired

several extensions and revisions. It models several network features and protocols, including

802.11 MAC and PHY elements [38]. A disadvantage of NS-2 is that it has grown highly

65

complex, thereby it hardens the execution of mobility simulators in the framework; while in

average conditions, it permits up to only a few hundred nodes running as it consumes a lot of

memory and CPU resources [85]. Several mobility simulators couple freely with NS-2 for

simulating VANET, including SUMO, MOVE and CityMob.

Jist/SWANS

Java in Simulation Time (JiST) is a general-purpose high performance discrete event engine

buoyed by the Scalable Wireless Ad-hoc Network Simulator (SWANS). SWANS is designed

basically for MANET [85][38]; but it also couples with the STRAW mobility generator for use

in VANET. SWANS is equal in capabilities to NS-2 and GloMoSim, while it exhibits much

more efficiency in resource use with the capacity to simulate beyond 10,000 nodes. However,

the SWANS project is no longer active.

GloMoSim

Global Mobile Information System Simulator (GloMoSim) is a library-based parallel discrete-

event simulator for wireless networks [85][38]. It can work in combination with STRAW as

well as VanetMobiSim mobility generators; and has capacity to simulate several thousand nodes.

GloMoSim has given way to the commercialized version named Qualnet.

2.8.4 Vanet simulators

Any suitable VANET simulator should incorporate a tightly integrated form of mobility

generator and network simulator together with a radio channel modelling [87][90]. But some

authors have expressed the view that tight coupling restricts the possibility of modular

improvement to the respective models [86].

66

2.8.4.1 TraNS

Traffic and Network Simulation Environment (TraNS) is a coupling of NS-2 and SUMO, to

realise the first VANET simulator with feedback impact on mobility; although not the other way

round [85][38][4]. TraNS parses the output of SUMO into NS-2 environment continuously

during runtime using TraCI, a general-purpose interface framework that is also developed by the

TraNS’ authors. Maintenance of TraNS has however been suspended since 2008 [85].

2.8.4.2 Veins

The Vehicles in Network Simulation (Veins) is an open source VANET specific simulator [94].

Veins is a product of the bidirectional coupling of SUMO mobility generator and the OMNeT++

network simulator suite elements, comprising of INET protocols stack with the MiXiM radio

propagation framework [85]. The coupling of SUMO and OMNeT++ in Veins is not tight, but it

supports feedback reactions both ways. As at present, not much work exists to validate the

effectiveness of the Veins simulator.

2.8.4.3 NCTU-ns

National Chiao Tung University Network Simulation (NCTU-ns) was for some time an open

source software; but has turned commercial since 2011 under the new name of EstiNet [85].

NCTU-ns models the complete IEEE WAVE (Wireless Access in Vehicular Environments)

architecture as well as several wireline and wireless standards including IEEE 802.11b, 802.11e,

802.11p, 802.16d, etc. It is written in C++; and features quite an advanced GUI. NCTU-ns

incorporates mobility models that include random walk, car-following-IDM with lane-changing

and intersection management. The network and mobility simulation modules in NCTU-ns are

bidirectional and tightly integrated. The EstiNet is a multifunctional network simulator and

67

emulator having link to the real Linux TCP/IP protocol stack in its engine, which operates on a

discrete-event mechanism with kernel-re-entering capacity. It runs on Fedora OS platforms;

with capability of instantiating up to 4096 nodes within a simulation run, although this size may

be increased upon effecting some specified modifications. The EstiNet simulator development

is an ongoing project.

2.8.5 The choice of simulator for VANET study

So far there is no de facto simulator adopted for VANET research, but some directions for the

development of such has largely emerged [85], which is due to improved understanding of its

underlying requirements. There are some contemporary VANET simulators that have appeared

popular or widely patronized, including NS-2 and NCTU-ns/EstiNet [38]. NS-2 requires

coupling with mobility generators to yield secondary simulators such as TraNS; while NCTU-

ns, as shown in Fig. 2.23, is depicted as strong on both sides of mobility and network simulation

[4]. Furthermore, NCTU-ns exhibits a lot of advantages over traditional simulators such as NS-2

or OPNET [38], which is due to its novel kernel re-entering technology. Both NS-2 and

GloMoSim are poor in modelling very large networks while JiST/SWANS is harder to use than

others [38]

Figure 2.23: Strength of Traffic, VANET, and Network simulators [4]

68

We summarise features of three VANET simulation environments for evaluation in Table 2.2.

Table 2.2: Comparison of TraNS, Veins, and EstiNet simulators [38][85][89]

Characteristic
V a n e t S i m u l a t o r

TraNS Veins NCTU-ns / EstiNet

Network
Simulator

Capability

NS-2
Ease of use – Moderate

Ease of setup – Moderate

OmNet++
Ease of use – Hard

NCTU- ns / ESTINET
Ease of use – Hard

Ease of setup – Hard

Mobility
Generator

Capability

SUMO
Random and manual set up routes

model

Car following
Ease of setup – Moderate

Ease of use – Hard

SUMO NCTU- ns / ESTINET
Random and manual set up routes model

Microscopic, space-continuous and

time-discrete
Lane models Multi-lane streets with

lane-changing

Car following

Coupling of
Mobility And

Network

Simulator

Unidirectional coupling. Information
exchanged in communication protocols

can influence the vehicle behavior in the

mobility model.

Bidirectional coupling

Tightly integrated coupling
The design of the general purpose

simulator includes several libraries such

as the one for VANET

Applications

Development

Suitability

Routing Protocol - suitable

MAC Protocol – suitable

Safety Applications - unsuitable
Info dissemination - avoid

Traffic Management -avoid

Internet Access – suitable

Routing Protocol - suitable

MAC Protocol – recommended

Safety Applications - unsuitable
Info Dissemination - avoid

Traffic Management - avoid

Internet Access - suitable

Routing Protocol - unsuitable

MAC Protocol – suitable

Safety Applications - recommended
Info dissemination - unsuitable

Traffic Management - unsuitable

Internet Access - recommended

Ease of Set Up Moderate Hard Moderate

Ease of Use A lot of manual parameter inputs are

needed for TraNS

 Mostly GUI guided parameter selection

dialog

Availability Development discontinued since 2008 Commenced mid-2000s, and being

developed by community. Not

much published work to validate its

use.

Commenced early 2000, and being

actively improved. Much used in

published works.

Generally, the criteria for selecting a VANET simulator should include important questions of

[4][85]:

 usability features

 complete characterization of VANET, in particular mobility modelling, and

 the type of application that is being investigated

NCTU-ns (aka EstiNet) is deemed suitable on the conditions of usability and fuller

characterization of VANET, although it attains a limited recommendation for simulating routing

protocol study [85]. Nevertheless, we choose to use EstiNet because of its availability, while we

work within the frames of its limitations in this study. The EstiNet simulator/emulator suite is a

69

multifunctional product containing specific network libraries including VANET’s. Table 2.3

describes features of the EstiNet package.

Table 2.3: Features of the EstiNet simulator/emulator (adapted from [95][96])

EstiNet Simulator Engine 8.0 – Basic framework

Fixed network library Ethernet hub / switch / router, Optical networks, RIP I/II, OSPF

Wireless network library IEEE 802.11 (a)(b)(g) ad-hoc and infrastructure mode networks, mobile ad

hoc networks, IEEE 802.11(b) wireless mesh networks, Mobile IP, GPRS

networks, channel propagation models

Media streaming library Media streaming

QoS Library RTP / RCTP / SDP /QoS Diffserv , IEEE 802.11(e) QoS WLAN

 EstiNet can incorporate real-life network applications during a simulation/emulation.

EstiNet can incorporate real-life Linux TCP/IP protocol stacks during a simulation/emulation

Optional Add-on Modules

Emulator IP real network emulation Library

Fixed network advanced features MPLS / VPLS / VLAN / VRRP / RSTP / STP / MSTP / Static Route / RIP/ OSPF

/ BGP / IS-IS

Wireless network advanced features IEEE 802.11n (EDCA , A-MSDU , A-MPDU , Block Ack and Primary &

Secondary)

VANET Wireless vehicular networks Library* (*with source code)

Open Flow Open Flow switch 1.1.0 / 1.0.0

LTE LTE R.9 , 3GPP TS 23.401 / TS 24.301 /TS 36.331 / TS 36.322 / TS 36.231 /

TS 36.211 / TS 36.212 / TS 36.213

OS Platform

Fedora Linux (open source)

The emulator module of the EstiNet package allows the integrative use of the simulator with a

linking to real life applications, operating systems and devices. EstiNet is reputed to have been

in patronage by over 20000 customers or institutions in about 144 countries, and has over 900

published papers that support its credible use; including several of them that are involved with

VANET-related study. EstiNet Technologies Inc. runs an EstiNet University Programme (EUP)

70

license for qualified institutions upon relevant request to the organisation. The architectural

features of the EstiNet simulator/emulator in Fig. 2.24 show its components and general features.

Figure 2.24: Features of EstiNet architecture [97]

2.8.6 Simulation environment

The following conditions should necessarily hold in the simulation environment of vehicular

nodes with data packets.

 Nodes are in constant mobility state

 Each node knows its current position coordinates

 Each node is aware of its immediate neighbors’ positions

 The destination’s current position is known

 Vehicular traffic dynamics

 Generation of communication events

Table 2.4 compares some general simulation parameters used in the stated protocols’

development evaluation, including GPSR, AODV, etc. The minimal packet size of 64 bytes that

71

was used in GPSR column was rather chosen, according to its author, because larger packets

tend to monopolize the communication channel and cause queue overflow at the MAC layer

[98], or even induce excessive collisions [11]. We referenced these parameters in our choices

that are shown in Table 4.1.

Table 2.4: Simulation parameters comparison

Simulation

Environment
 GPSR [21][98] AODV [11] GLAR [19]

Epidemic,

AODV,

GPSR,

MaxProp [88]

Network

simulator
NS-2 NS 2.34

Simulation

time
900s 600s 600s 14,760s

Simulation

area

1500m x 300m,

2250m x 450m,

3000m x 600m

50m x 50m,

100m x 100m,

150m x 150m

600m x 600m
131km x 89

km

MAC protocol IEEE 802.11
IEEE 802.11

DCF

Traffic

application
CBR CBR

Number of

nodes

simulated

50, 112, 200
50, 100, 500,

1000
30 500 - 1000

Traffic load

(packet size)
64 bytes 20-100 KB

Transmission

range
250m 10m 100 m 100 – 500 m

Propagation

model

Random waypoint

mobility model
Random

Random

waypoint

mobility

model

Two ray

ground

shadowing

Speed
 0 - 18 m/s

(64.8km/hr)
0.4-0.8 m/s 20 – 80 km/hr

72

3.0 METHODOLOGY

In this section we describe the various functional parts of the S* routing method as well as the

relevant algorithms for its implementation. We first explain the classic A* model and its

application to the VANET context, and then we outline the S* module’s components. In the

second part, we show the routing protocol’s basic interaction structures for forwarding packets,

and we show the core parts of the greedy selection code.

3.1 The A* algorithm function

In the classic A* algorithm applications, the objective usually is to achieve optimal path search

over a graph, going from a start node to a goal node. A* was originally proposed by Hart,

Nilsson, and Raphael [32] as a best-first search algorithm that always expands the most

promising node n based on the evaluation function f(n) = g(n) + h(n). What sets A* apart from

a greedy best-first search is that it also takes the value of the path already covered into account,

the g(n) part, which is the cost from the starting point and not simply the local cost from the

previously expanded node [99]. The function g(n) is the cost of the path from the start node s to

a current node n along the paths found so far in a search tree. The function h(n) is an heuristic

estimate of the cost of the cheapest path from n to the goal node. During a path search, A* uses

the function f to evaluate its candidate next-hop nodes and selects the best, i.e. the node that

yields the lowest f value.

73

The A* algorithm is presented as follows (Fig. 3.1):

Algorithm A*

(1) Put the start node s into OPEN.

(2) IF OPEN is empty THEN exit with failure.

(3) Remove from OPEN and place in CLOSED a node n

for which f is minimum.

(Resolve ties for minimal f value,

but always in favour of any goal node).

(4) IF n is a goal node THEN exit successfully,

with the solution obtained by

tracing back the pointer from n to s.

(5) ELSE expand n, generating all its successors,

and attach to them pointers back to n.

 FOR every successor n′ of n DO

 (5.1) IF n′ is not already in OPEN or CLOSED

 THEN estimate h(n′),

 and calculate f(n′) = g(n′) +h(n′),

 where g(n′) = g(n) + c(n, n′) and g(s) = 0,

 and put n′ into OPEN.

 (5.2) IF n′ is already in OPEN or CLOSED

 THEN direct its pointer along the path

 yielding the lowest g(n′).

 (5.3) IF n′ required pointer adjustment and was in CLOSED

 THEN reopen it.

 END FOR

(6) GO TO step 2.

Figure 3.1: The A* path-search pseudocode [32][34]

We restate the following functions:

 Best First search: f(n)=h(n), (3.1)

 Uniform Cost search: f(n)=g(n), (3.2)

74

 A* search: f(n) = g(n) + h(n), (3.3)

Note that f(n) = h(n) is the Greedy selection function that is used commonly in the various

geographic forwarding routing protocol designs that we reviewed in sections 2.3 and 2.4.

The A* function f(n) = g(n) + h(n) is the estimated cost of the cheapest solution going through

n, thus in VANET distance measures,

 g(n) = actual distance from the source node s to the currently forwarding node n.

 h(n) = estimated distance from n to the destination.

In the VANET implementation of A* the accumulative OPEN and CLOSED global queues shall

not apply because each node implements the algorithm locally, before forwarding packet(s) unit

together with the relevant parameters to the next-hop. Moreover, any OPEN and CLOSED

memory implementation in VANET unavoidably quickly becomes outdated in the face of a

rapidly changing topology.

3.2 The S* routing module design

The classic A* computes and returns the result of the complete path links from a source node to

a goal node over a static graph. However, the VANET graph is not static, requiring that the

implementation of the algorithm in reinitiates at every forwarding node n, and returns the path to

the next-hop. Hence, the complete path that a packet traverses is the connection of the

forwarding points, i.e. the locations of the vehicular nodes as at the times of forwarding. We

give the term Successive A* to this forwarding algorithm because every forwarding node

initialises an instance of it as a packet is forwarded from node to node, and we use the symbol S*

for the convenience of referring to it.

75

The definitive objective of the S* routing method is to realise optimal geographic forwarding of

packets in VANET using the A* algorithm approach. The S* routing module uses some

terminologies and concepts from the GLAR model. We first describe the GLAR model, and

then we make an application of A* to formulate S*.

3.2.1 The GLAR route discovery model

The Greedy Location-Aided Routing (GLAR) [19] protocol design has been described in section

2.4.6. Every node in GLAR maintains a routing table similar to that of classic protocols such as

AODV [11], and it is only when the route to a destination is not known by any neighbour node

that the RREQ broadcast is initiated by the source node to derive the required path. The peculiar

feature of the GLAR protocol model is its use of a source to destination computed baseline, as

shown in Fig. 3.2, to direct route discovery effort along this reference line by choosing next-hops

that are closest in distance to it.

D

L

K

I

J

H

C
B

A

S

E

F

G

baseline

M

Figure 3.2: GLAR protocol model[19]

76

In Fig. 3.2, the circle around node D is the expected zone of reaching it, which is defined by the

product of the node’s velocity and time interval - between t0 when the node’s location is first

pinpointed and time t1 when the route discovery action is initiated. The rectangular area is the

request zone that delimits (and reduces) the area of path search beyond which outlying nodes

discard RREQ broadcast messages. From the source node S, the GLAR algorithm selects node

A as the next-hop; and then node A selects node I and so on; which ensures that every successive

next-hop has a higher progress value of distance DIST (Fig 3.3.) away from the source node S.

The parameter VDIST, i.e. vertical distance, as shown in Fig. 3.3, functions to determine the

proximity of the nodes to the baseline.

Figure 3.3: An example of DIST and VDIST [19]

The equation of the line SD, i.e. the baseline, is determinable by

(xd – xs)(y – ys) – (yd – ys)(x – xs) = 0 (3.4)

And when the values of coordinates of S and D are assigned into equation (3.4), it results in the

equation of a line, ax + by + c = 0 (1.3)

77

Therefore within the search region, for any node A with coordinates , its distance to the

baseline is:

 (3.5)

3.2.2 The S* forwarding technique for VANET routing

We assert that in the VANET environment, a single persistent baseline as used in GLAR [19]

cannot be relied upon to accurately route packets, as vehicular nodes’ mobility rate is much

higher than what is obtainable with common MANET devices. A persistent baseline view is

much similar to charting an end-to-end session in conventional networks, a practice that has

been shown to be infeasible in VANET. We employ baselines generation at every forwarding

point to aid local decision-making and more precise routing. Moreover, the S* approach will

involve packet swinging (described in section 2.3.7) where each packet independently

progresses towards moving next-hop targets and destination through regular re-computations of

its path.

The S* forwarding technique is then implementable as follows:

 Every node possesses a copy of the enhanced A* program running on it in the S*

application ensemble.

 Each node n periodically beacons every neighbour node n′ within its transmission range

and acquires their respective identity and geographical position information – for its

maintenance of neighbour list.

 Any packet(s) forwarding node n evaluates its neighbour list, from which it makes choice

of a next-hop node n′.

78

 The next-hop choice shall be a node within the positive advance region relative to the

forwarding and destination nodes’ positions, as depicted in Fig. 3.4. A node n′ is in the

positive advance region if for a computed Euclidean distance h to the destination, then

h(n′) < h(n).

n d
Baseline

VDIST_MAX

Positive

advance

region

Figure 3.4: Next-hop choice region delineation for a forwarding node n

 The eventual next-hop choice is the node n′ with the least f value, where f(n′) = g(n′) +

h(n′). In Fig. 3.5, f(b) has the least value in the evaluation of nodes a and b for next-hop

choice; hence node b is chosen.

g(b)

g(a)

h(b)

a

b

h(a)

Baseline

next-hop choice node n' is b,

which has lowest f = g + h value

dn

Figure 3.5: Next-hop selection function based on A* algorithm

79

A distinguishing feature of S* technique is that it operates over extremely mobile grids as

compared to the traditional A* that searches for path over static grids. As such, S* does not

keep children or ancestors of node items in queues but discards such data as soon as the next-hop

is decided. A problem associated with the classic A* is its memory space requirement when

very large numbers of nodes’ data are to be kept in the global OPEN and CLOSED lists. The

memory space problem is eliminated in S* as the memory for handling the neighbour list is

minimal as well as local to every VANET node n.

With reference to Fig. 3.6; for a source node s, a forwarding node n, and a next-hop node n′,

when f(n) = g(n) + h(n), we have f(n′) = g(n′) + h(n′).

Thus g(n) = c(n, s), and g(n′) = c(n, s) + c(n′, n) for all n′

But the cost g(n′) for any node n′ includes the cost so far to g(n) for all n′.

So g(n′) = c(n′, n), since c(n, s) is a constant value in regard to all n′. (Note that c(n, s) span,

shown in the figure, may be over several nodes that have been previously traversed).

This means we may use just the local cost from n to each n′ as the relevant g(n′) cost part.

Hence it is not necessary to keep knowledge of prior paths that packet(s) have taken in the S*

implementation, and we do not need to keep any global or persistent OPEN and CLOSED lists.

Figure 3.6: The g(n) cost model in the S* function

n2′

n1′

n3′

n

c(n, n′)
c(n, s)

Three next-hop nodes for
which c(n, s) is constant,
hence we only need
evaluate c(n, n′) for each n′

80

We show the S* next-hop selection pseudocode in Fig. 3.7. The Greedy pseudocode in the

GPSR [98][21] forwarding construct is comparable to this, where the main difference is in line

7 that has the Distance(n, n′) as an added function.

Algorithm S* GetNextHop (dst_n)

(1) bestnexthop = n // self is n

(2) least_f = 10000000 // a very large value for distance f = g

+ h

(3) for each n′ in L do

(4) if n′ == dst_n

(5) bestnexthop = n′

(6) break

(7) distance_f = Distance (n, n′) + Distance (n′, dst_n)

(8) if distance_f < least_f

(9) bestnexthop = n′

(10) return bestnexthop

Figure 3.7: S* Next-hop Selection Pseudocode

The search-space orthogonal limit selection function

The region within which to select a next-hop (Fig. 3.4) may be restricted to an orthogonal

distance VDIST_MAX away from the baseline. Therefore:

 For a forwarding node with coordinates (x1, y1) and a destination with coordinates (x2,

y2), the connecting baseline is derived by

, (1.2)

81

and when the values of (x1, y1) and (x2, y2) are assigned, we derive the straight-line

formula . (1.3)

 For any qualifying next-hop node n′ with coordinates (,); then for any chosen

limit value of VDIST_MAX,

 (3.7)

An S* forwarding model

The S* model in Fig. 3.8 below extends the GLAR [19] model of Fig. 3.2; which we describe as

follows:

 The source node S is to send data packets to the destination node D; but node D is

moving in the direction southwards from the top-right corner as indicated in the model.

 At node S, the S* routing algorithm makes a next-hop choice among neighbour nodes

within its range. Node A is selected as next-hop since it would be evaluated to have the

least f = g + h value.

82

D

L

K

I

J

H

C
B

A

S

E

F

G

D′

Packet hopping direction

M

D′′

Baselines

D
ire

c
tio

n
 o

f n
o
d
e
 D

’s
 tra

v
e
l

Figure 3.8: S* forwarding model (adapted from [19])

 Subsequently, the forwarding node A selects node I as next-hop, while node I selects

node M, and so on. The directed edges S-A, A-I, and I-M indicate the packet forwarding

path.

Note that S* selected node M rather than K that the GLAR scheme (Fig. 3.2) would have

selected.

3.3 Simulation algorithms design

Regarding the greedy forwarding simulation for VANET that we implement, we first show

simple packets forwarding use-case and collaboration diagrams and then we present a relevant

code segment.

In the use-case model (Fig. 3.9), every node that is involved with packet(s) handling is aware of

itself as source, intermediate or the destination node. The model shows the three main packets

83

handling functions: MaintainNeighbourList, DetermineNextHop and ForwardPacket. Every

node in the system maintains knowledge of its next-hop neighbours’ positions. A node that has

any packet to handle receives with it the destination information as supplied by ForwardPacket.

Then it selects its next-hop by going through neighbour list obtained from

MaintainNeighbourList. Finally, ForwardPacket dispatches the packets. The SelectNextHop

submodule embeds the main greedy selection code, which may be Greedy, S* or any other

technique.

Figure 3.9: The greedy packets forwarding use-case diagram

The cycle of collaboration among nodes is depicted in Fig. 3.10. Normally every node in our

simulated VANET context engages in periodic beaconing of neighbours to sustain its neighbour

positions’ knowledge. As soon as a potential ForwardingNode receives packets, it uses the

destination information to select a suitable node from Nexthop Neighbours, a list of which it

maintains. Thereafter it sends the packet(s) to the NextHopNode.

SendPacket

System

ReceivePacket

ForwardPacket

UpdateNeighbourList

BeaconNeighbours

MaintainNeighbourLi

st

* *

SourceNode DestinationNode

Node

IntermediateNode

*

*

*

*

*

*

*

*

*
*

SelectNextHop

GoThruNeighbourList

DetermineNextHop

*

*

*

*

*

*

84

ForwardingNode NextHop Neighbours

beacons()

beaconReplies()

NextHopNode

recvPacket()

sendPacket()

ChooseNextHop()

recvPacket()

Figure 3.10: The greedy packets forwarding collaboration diagram

We developed the codes for the implementation of both the Greedy and the S* forwarding

modules and embedded these in the generic UserModule template that is prescribed in the

EstiNet simulator. We modified and adapted an AODV routing protocol code copy that runs in

EstiNet to implement the greedy forwarding functions. We disabled the routing table entry

function for the forwarding of non-AODV packets and replaced that part with our forwarding

code. The S* code and the Greedy code that we developed are quite similar; with a difference

only on a single line that implements the g part of f = g + h evaluation.

We show the S* forwarding code segment in Fig. 3.9 below, which contains the following

sections:

 positive advance element, in line 1765

 neighbour list traversal function, beginning at line 1746

85

 Greedy or S* selection function (in line 1768, assigns nei_g = 0 for the Greedy version of

the algorithm)

 vertical distance evaluation function, line 1760

Appendix A displays some more portions of the adapted AODV codes.

Apart from the object file names, the only difference between the S* and the Greedy algorithm

programs is in line 1768.

1696 //atanda, ASTAR ENGINE

CODE//

1697 int UserModule02::getnexthopAStar(u_long dst_ip)

1698 {

1699 //initialize to myself

1700 u_long bestnexthop = *mip;

1701

1702 int dst_NID;

1703 double dst_X, dst_Y, dst_Z;

1704

1706 dst_NID = ipv4addr_to_nodeid(dst_ip);

1707

1708 GetNodeLoc(my_NID, my_X, my_Y, my_Z);

1709 GetNodeLoc(dst_NID, dst_X, dst_Y, dst_Z);

1710

1711 //BEGIN Calculate baseline values

1712 double a, b, c;

1713

1714 /* Compute the aX + bY + C = 0 line equation formed by (x0, y0) and (x1, y1). //atanda,

template obtained from obstacles.cc*/

1715 if (dst_Y == my_Y)

1716 {

1717 a = 0;

1718 b = 1;

1719 c = -1 * my_Y;

1720 if (dst_X == my_X)

1721 a = b = c = 0;

1722 }

1723 else if (dst_X == my_X)

1724 {

1725 a = 1;

1726 b = 0;

1727 c = -1 * my_X;

1728 } else

1729 {

1730 b = -1;

1731 a = (dst_Y - my_Y) / (dst_X - my_X);

1732 c = my_Y - my_X * a;

1733 } ///END Calculate baseline values

1734

1735 //my estimate straight line distance to destination

1736 double my_h = sqrt(((my_X - dst_X)*(my_X - dst_X)) + ((my_Y - dst_Y)*(my_Y - dst_Y)));

1737 int nei_NID;

1738 double nei_f, nei_g, nei_h; //For f = g + h

1739 double least_f = 10000000; //initialize with an infinite big value

1740 double nei_vdist;

1741 double nei_X, nei_Y, nei_Z;

86

1742

1743 Nei_entry *p_nei = nei_list.getHead();

1744

1745 //BEGIN Traverse list of my neighbors and make selection

1746 while (p_nei)

1747 {

1748 nei_NID = ipv4addr_to_nodeid(p_nei->nei_addr);

1749

1750 if (nei_NID == dst_NID)

1751 {

1752 bestnexthop = p_nei->nei_addr;

1753 break;

1754 }

1755 else //assess for nexthop

1756 {

1757 GetNodeLoc(nei_NID, nei_X, nei_Y, nei_Z);

1758

1759 ///perpendicular distance to baseline, VDST = |((aX+bY+c)/sqrt((a*a)+(b*b)))|

1760 nei_vdist = fabs(((a * nei_X) + (b * nei_Y) + c) / sqrt((a * a) + (b * b)));

1761

1762 nei_h = sqrt(((nei_X - dst_X)*(nei_X - dst_X)) + ((nei_Y - dst_Y)*(nei_Y - dst_Y)));

1763

1764 //positive advance and restrict range of nodes allowed from baseline

1765 if ((nei_h < my_h) && (nei_vdist < VDIST_MAX)) // int VDIST_MAX .h file

1766 {

1767 //Calculate f = distance g + distance h. But for Greedy assign nei_g = 0.

1768 nei_g = sqrt(((my_X - nei_X)*(my_X - nei_X)) + ((my_Y - nei_Y)*(my_Y - nei_Y)));

1769 nei_f = nei_g + nei_h;

1770

1771 if (nei_f < least_f)

1772 {

1773 least_f = nei_f;

1774 bestnexthop = p_nei->nei_addr;

1775 }

1776 }

1777 }

1778 p_nei = p_nei->next;

1779 }

1780 return bestnexthop;

1781 }//getnexthopAStar

Figure 3.11: S* forwarding code segment

We designed the dialog box mechanism (Fig. 3.12) for the entry of VDIST_MAX (maximum

vertical distance to the baseline) values as depicted in line 1765 of the S* code segment (Fig.

3.11); while appendix A3 shows the code that generates the dialog box.

87

Figure 3.12: Dialog-box for setting protocol parameters, showing the VDIST_MAX slot

3.4 Simulation parameters

We carried out the VANET packets forwarding experiments using the EstiNet simulator with the

general parameter settings shown in Table 3.1; and which are comparable to those shown in

Table 2.4, particularly with that of GPSR. We imported Openstreetmap files, as shown in

Appendix B, to simulate road networks depicting four meters wide single-lane tracks in both

directions. Conventionally, most studies simulate on two-dimensional space, which we also

adopted; however, it is simple to extend greedy forwarding to three-dimensional space [98].

88

Table 3.1: Simulation Parameters

Parameter Configuration

Simulation time 600s, 1000s

Simulation area 1700m x 600m; 12000m x 4500m approx.

MAC protocol IEEE 802.11p

Traffic application CBR

Number of nodes 10, 15, 100, 250

Traffic load (packet size) 64 bytes

Transmission range 885m

Propagation model / Mobility

model

Two ray ground shadowing; random, microscopic,

space-continuous and time-discrete, multi-lane, lane-

changing and car following

Nodes’ speed 0 -18m/s (0 - 64.8km/hour)

Due to hardware limitations, we simulated only up to 250 nodes conveniently. In the AODV’s

evaluation [11], the author expressed the hardships of running 1000 nodes. In GPSR’s

evaluation [98], the author simulated 50, 112 and 200 nodes of mobile devices having uniform

density of 1/9000m
2
, which however would be too dense to describe a VANET situation. The

DSR’s simulation density was lower at 1/35912m
2
 [98]. We simulated node speeds in the range

of 0-18 m/s (0-65 km/hour), which is analogous to what obtains in urban areas. We show in

Table 3.2 the nodal density ratios of the simulation environments, with example visual snapshots

in Appendix C.

Table 3.2: Simulation node densities

Nodes Region (approx.) Density

10 1700m x 600m 1/ 102000 m
2

15 1700m x 600m 1/ 68000 m
2

100 12000m x 4500m 1/540000m
2

250 12000m x 4500m 1/216000m
2

89

The simulator comprises the model of Wireless Access in Vehicular Environments (WAVE)

Service Advertisements (WSA) beacon services, by which every node establishes

communication channel connectivity with its neighbours. We set the WSA at the minimum

level of one per every 5 seconds, to minimize network congestion, as the routing protocol also

beacons neighbour discovery packets periodically. We simulated the multi-hop transmission of

packets over the network from a single source to a single destination since our primary aim is to

determine end-to-end packets delivery success rate; but the evaluation of GPSR protocol had

involved 22 sending nodes. The packets’ traffic that we used is of the udp type, which is

depicted as stg/rtg in EstiNet with parameters as shown in Table 3.3. We adjusted the FIFO

packets queue from the default 50 to 1000 to minimize packets dropping occurrences. Appendix

D displays the protocols stack in EstiNet among which we plugged the ‘user_module’ of Greedy

and S* forwarding modules.

 Table 3.3: Simulation packet specifications

Parameter Source node settings Destination node settings

User datagram protocol (udp) stg -u rtg -u

Packets size 64

Simulation time 1000

Port -p 8001 -p 8001

Target address xx.xx.xx.xx

We used transmission range of 885m; having transmission power of 28.80814dbm, which is the

default in EstiNet. GPSR [98] evaluation simulated the range of 250m, while for GPSR-BB

[100] it was 250m and 1000m ranges. The US Dedicated Short Range Communications (DSRC)

range specification is up to the range of 1000m; nevertheless using large transmission ranges

90

increases the probability of packet collisions in a busy network [80]. The VDIST_MAX (i.e. the

maximum orthogonal distance to the baseline settings) parameter is set at 1000m default.

3.5 Simulator limitations in the study

The EstiNet simulator runs on remote servers, while the simulations files are quite large; hence,

it requires high-bandwidth unbroken Internet connectivity as well as high-performance hardware

to process jobs. Thus, the inadequate availability of these resources meant that sometimes a job

runs for as long as 24hrs. We also could not process larger than 250-node job files, neither could

we perform multiple re-runs for presentation due to limited study period.

3.6 Analysis data characteristics

The EstiNet simulator provides three basic forms of output data: (1) graphs, (2) GUI animation,

and (3) packets’ trace. We majorly used the graph outputs to analyse and compare packets

forwarding and delivery performances. The GUI animation displays the motion of nodes and

packets. Packets trace shows the execution characteristics of each packet piece, which we

needed not to present in this report.

The confidence interval value for the simulation runs could not be mathematically determined;

but what we did instead is to perform repeated runs of some simulation files and compare the

different outputs for consistency. We show in Appendix E an example set of outputs obtained

from the running of a file.

The simulation results’ graphs display the number of unicast incoming or outgoing packets

delivery success rates. The incoming packets data is read at the destination node, while that of

the outgoing is at the sending node. The graphs show packets delivery levels over the simulated

period of 1000 seconds.

91

4.0 SIMULATION RESULTS & EVALUATION

In order to evaluate the performance of the S* packets forwarding technique in the VANET

environment and in comparison to the basic Greedy technique, we simulated the algorithms on

the EstiNet simulator. In addition, we simulated and compared the location-aware forwarding

method with the table-driven forwarding of Ad-hoc On Demand Vector (AODV) protocol.

4.1 Performance of the S* forwarding technique

The simulation results of the basic Greedy and the S* forwarding techniques are presented as

graphs and compared in this section. We show results for the different numbers of nodes

simulated, including 15, 100, and 250.

4.1.1 Comparison of Greedy and S* unicast incoming packets

Fig. 4.1 (a) - (i) reflect the number of unicast incoming packets received at the destination node

over the network sizes shown and for the Greedy and the S* forwarding methods.

Figure 4.1 (a) - (i): Comparison of Greedy and S* number of unicast incoming packets

F

Figure 4.1 (a): No. of unicast incoming packets - Greedy (15 nodes)

92

Figure 4.1 (b): No. of unicast incoming packets - S* (15 nodes)

Fig. 4.1 (a) and (b) depict performance over the network size of 15 nodes for Greedy and S*

respectively. Both methods recorded moments of forwarding where the number of unicast

packets delivered reached beyond 704 level on the vertical axis; although the number of S*

graph columns appear to be slightly more on the horizontal axis. The two graphs further show

patterns where some areas are comparatively congruent during the initial period of 0-284

seconds, while afterward there are complementarily alternating graph columns and empty

spaces. It does appear that either of the two algorithms works best in certain regions of this

simulation environment, and thus would fit different VANET scenarios best.

93

Figure 4.1 (c): No. of unicast incoming packets - Greedy (100 nodes)

Figure 4.1 (d): No. of unicast incoming packets - S* (100 nodes)

Fig. 4.1 (c) and (d) show the graphs of incoming packets in the 100-node network. The network

density of 1/540000m
2

is very sparse, which easily and quickly partitions, resulting also in sparse

graphs. However both Greedy and S* forwarding effected some packets delivery at the

commencement region; with S* rising to a level around 135 compared to Greedy’s 56.

94

Figure 4.1 (e): No. of unicast incoming packets - Greedy (250 nodes)

Figure 4.1 (f): No. of unicast incoming packets - S* (250 nodes)

Fig. 4.1 (e) and (f) show the graphs of incoming packets in the 250-node network. Again,

successful packets delivery occurred at the commencement only. However, S* delivered a bit

95

more packets showing two prominent graph columns that rises up to 144 level, compared to one

column for Greedy.

Fig. 4.1 (g): No. of unicast incoming packets - Greedy and S* (15 nodes)

Fig. 4.1 (g) shows the Greedy and the S* unicast incoming packets delivery rates in discrete

values in the 15-node network, which reflects the superimposition of the graphs of Fig. 4.1 (a) &

(b) relatively. During the period 0-284s both algorithms displayed activities; between 284-568s

S* mostly demonstrated activity; between 568-852s Greedy mostly demonstrated activity; and

between 852-994s S* mostly demonstrated activity. Therefore, judging from the foregoing

alternating activity graphs of Greedy and S*, it appears that either of the algorithms would fit

certain situations best in the VANET scenario.

96

Fig. 4.1 (h): No. of unicast incoming packets - Greedy and S* (100 nodes)

Fig. 4.1 (h) shows the Greedy and the S* unicast incoming packets delivery rates in discrete

values in the 100-node network, which reflects the superimposition of the graphs of 4.1 (c) & (d)

relatively. S* has more delivery values than does Greedy in the sparse and soon partitioned

network.

Fig. 4.1 (i): No. of unicast incoming packets - S* (250 nodes)

97

Fig. 4.1 (i) shows the Greedy and the S* unicast incoming packets delivery rates in discrete

values in the 250-node network, which reflects the superimposition of the graphs of 4.1 (e) & (f)

relatively. S* has more delivery values than does Greedy.

The graphs in Fig. 4.1 (a) - (i) show that S* tends to successfully deliver more packets than

Greedy over the different density networks simulated. The better delivery rate could be

attributable to the fact that the packets of S* travel over shorter distances in reaching the

destination and therefore effect more throughput than that of Greedy.

4.1.2 Comparison of Greedy and S* unicast outgoing packets

Fig. 4.2 (a) - (i) reflect the number of unicast outgoing packets as dispatched from the source

node over the network sizes shown and for the Greedy and the S* forwarding methods.

Figure 4.2 (a) - (i): Comparison of S* and Greedy number of unicast outgoing packets

Figure 4.2 (a): No. of unicast outgoing packets - Greedy (15 nodes)

98

Figure 4.2 (b): No. of unicast outgoing packets - S* (15 nodes)

Fig. 4.2 (a) and (b) of 15-node size outgoing unicast graphs are similar in patterns to Fig. 4.1 (a)

and (b) respectively; denoting that most of the packets successfully dispatched were also

delivered by both the Greedy and the S* methods. However, the dissimilarities in the outgoing

unicast graphs (Fig. 4.2 (a) and (b)) reflect the fact that the algorithms influence packets

dispatching too, and differently.

Figure 4.2 (c): No. of unicast outgoing packets - Greedy (100 nodes)

99

Figure 4.2 (d): No. of unicast outgoing packets - S* (100 nodes)

In the case of Fig. 4.2 (c) and (d), the outgoing dispatch of packets in the 100-node network size

does not match the corresponding incoming packets’ patterns that are seen in Fig. 4.1 (c) and (d),

i.e. most packets dispatched were not delivered. The disconnection of links in the sparse

network may have caused the mismatch in the outgoing to incoming packets ratios.

Nevertheless, the levels of outgoing packets of S* surpasses that of Greedy. Both graphs have

three principal graph columns that reached beyond 672; while S* in addition has some columns

that reached beyond 420 and 252 levels in the number of packets delivered at some periods.

Figure 4.2 (e): No. of unicast outgoing packets - Greedy (250 nodes)

100

Figure 4.2 (f): No. of unicast outgoing packets - S* (250 nodes)

Fig. 4.2 (e) and (f) of 250-node network for the outgoing number of unicast packets’ graphs

show a far more pronounced number of columns for S* than for Greedy. The S* graph has a

spread of columns that reaches beyond the 672 level; but Greedy has only one period of such

column, with the rest being at low level around 25. S* clearly demonstrated better packets

dispatch.

Fig. 4.2 (g): No. of unicast outgoing packets - Greedy and S* (15 nodes)

101

Fig. 4.2 (h): No. of unicast outgoing packets - Greedy and S* (100 nodes)

Fig. 4.2 (i): No. of unicast outgoing packets - Greedy and S* (250 nodes)

Fig. 4.2 (g) - (i) show Greedy and S* unicast outgoing packets delivery measures, which

respectively reflect the superimpositions of graphs in Fig. 4.2 (a) & (b), 4.2 (c) & (d), and 4.2 (e)

& (f). The S* packets dispatch rates appear higher than that of Greedy method in the three

graphs.

102

In general the number of unicast incoming and outgoing graphs of packets delivery success rate

demonstrate that S* performs better than the Greedy algorithm over the different density

networks simulated.

4.2 Effect of the orthogonal distance to baseline search-space limiting

We review the simulation results of the vertical distance to baseline restriction (the VDIST or

VDIST_MAX) performances in this section. The S* greedy forwarding method was used in the

simulations that produced these results, and for a 250-node moderately dense network. We show

results for both number of unicast incoming and outgoing packets delivery success rates; and for

different neighbour node selection limits, including 20m, 80m, 250m, 500m and 900m. The

results’ graphs show that the varying of the orthogonal extent to the baseline area from which the

set of potential next-hop nodes are selected does affect packets delivery success rate in VANET.

4.2.1 Effect of vertical distance selection limit of nodes on unicast incoming packets

Fig. 4.3 (a) - (h) reflect the number of unicast incoming packets received at the destination node

over the network size of 250 nodes for regulated vertical distances VDIST_MAX of 20m, 80m,

250m, 500m and 900m respectively.

103

Figure 4.3 (a) - (e): The effect of Vdist nodes selection limits on unicast incoming packets

Fig. 4.3 (a): No. of unicast incoming packets delivery over Vdist limit of 20m (an empty graph)

Fig. 4.3 (b): No. of unicast incoming packets delivery over Vdist limit of 80m (an empty graph)

Fig. 4.3 (a) and (b) show nil graphs for the number of unicast incoming packets delivered for

VDIST_MAX setting of 20m and 80m. The 20m and 80m limit areas may have been too narrow

104

as to encompass pertinent qualified nodes in these cases; hence effective packets forwarding

failed to take place.

Fig. 4.3 (c): No. of unicast incoming packets delivery over Vdist limit of 250m

Fig 4.3 (c) reflect some packets delivery value that reached 144 level during the initial

forwarding period of around 0-50s. In comparison to Fig. 4.3 (a) & (b) graphs that are empty for

the 20m and 80m Vdist restrictions, the 250m restriction limit enabled some nodes to forward

packets in the 1/216000m
2
 density network. It implies that Vdist restriction value must be

somewhere above 80m in this network for effective packets forwarding to take place.

105

Fig. 4.3 (d): No. of unicast incoming packets delivery over Vdist limit of 500m

In comparison to Fig 4.3 (c) of 250m restriction, Fig 4.3 (d) of 500m VDIST_MAX shows

increased packets delivery that is up to the 190 level and for a period longer than 0-50s. The

difference between the two graphs primarily reflects the effectiveness of the VDIST restriction

function. The packets delivery level at 250m is lower than that of 500m Vdist, which implies

that in the latter case more nodes were provided for evaluation as next-hop, with better selection

and forwarding opportunities.

Fig. 4.3 (e): No. of unicast incoming packets delivery over Vdist limit of 900m

106

Fig. 4.3 (e) reflects packet delivery at 900m Vdist restriction; which is slightly above the full

transmission range of 885m. The packets delivery level is at about 125, a value that is much

lower than the 190 of 500m Vdist in Fig. 4.3 (d) with a graph that also spans a longer period.

Both graphs display a short strand of packets delivery activity at some later period respectively.

Fig. 4.3 (f): No. of unicast incoming packets delivery over Vdist limit of 250m

Fig. 4.3 (g): No. of unicast incoming packets delivery over Vdist limit of 500m

107

Fig. 4.3 (h): No. of unicast incoming packets delivery over Vdist limit of 900m

Fig. 4.3 (f) - (h) show the unicast incoming packets delivery graphs in discrete values, which

correspond to the graphs in Fig. 4.3 (c) - (e) respectively. The graphs of VDIST_MAX at 250m

in Fig. 4.3 (f) and at 500m in Fig. 4.3 (g) are almost similar, but the latter’s graph shows delivery

value at a level closer to the 198 mark while the former reaches only close to 162. The

comparison of the graphs of Fig. 4.3 (g) and Fig. 4.3 (h) again show the better performance of

the 500m over the 900m VDIST_MAX selection.

4.2.2 Effect of vertical distance selection limit of nodes on unicast outgoing packets

Fig. 4.4 (a) - (e) reflect the number of unicast outgoing packets sent from the source node over

the network size of 250 nodes for regulated vertical distances VDIST_MAX of 20m, 80m, 250m,

500m and 900m respectively.

108

Figure 4.4 (a) - (e): The effect of Vdist nodes selection limits on unicast outgoing packets

Fig. 4.4 (a): No. of unicast outgoing packets delivery with Vdist limit of 20m

Fig. 4.4 (b): No. of unicast outgoing packets delivery with Vdist limit of 80m

109

Fig. 4.4 (c): No. of unicast outgoing packets delivery with Vdist limit of 250m

Fig. 4.4 (d): No. of unicast outgoing packets delivery with Vdist limit of 500m

110

Fig. 4.4 (e): No. of unicast outgoing packets delivery with Vdist limit of 900m

The outgoing unicast graphs of Vdist of 20m, 80m, 250m, 500m and 900m, in the foregoing Fig.

4.4 (a) - (e) all reflect packets dispatch rate that reach the level of 700; and in general the

performances are similar notwithstanding the different graph patterns. Furthermore, this form of

graph patterns still appears, albeit with varied columnar proportions, when the relevant

simulation files are re-run. The near-uniformity that the graphs display apparently implies that

the VDIST_MAX limiting does not influence the unicast outgoing packets dispatching at the

source nodes.

The near-uniformity of the unicast outgoing graphs of Fig. 4.4 (a) - (e) contrasts with those of

unicast incoming graphs of Fig. 4.3 (a) - (e) that show dissimilarities for the different

VDIST_MAX cases simulated. Fig. 4.2 (a) - (f) also reflect dissimilarities in the graphs of the

unicast outgoing packets delivery rates. Therefore, packets dispatch rate from the source nodes

can actually be influenced by changing network condition, although this is not the case with Fig.

4.4 (a) - (e) graph outcomes.

111

In conclusion, these results show that VDIST_MAX variations do not affect the number of

unicast outgoing packets delivery rate, although it affects the unicast incoming rates.

4.3 Position-aware forwarding dynamics

Fig. 4.5 (a) - (d) and 4.6 (a) & (b) show GUI animation snapshots of packets forwarding

simulation for the comparison of the table-driven method, using AODV [11], and the geographic

greedy routing method; with packets hopping from the source node 12 to the destination node 7

in the VANET scenario. Table-driven methods’ packets forwarding follow paths of pre-

determined sequence of node linkages; while in geographic greedy methods, a next-hop is

decided as a node closest to the destination among those within forwarding range.

Figure 4.5 (a) - (d): Snapshots of animated AODV packets forwarding

Figure 4.5 (a): An AODV forwarding instance – (1)

112

Fig. 4.5 (a) shows the beginning of the forwarding session for the table-driven AODV method

after route discovery, from the lower right corner to the upper left corner as 12–14–9–7

sequence, which is in line with the current positional order of the nodes. Thereafter the mobile

nodes moved about in the network arbitrarily, with switching of positions, breakage of links and

network partitioning simultaneously taking place.

Figure 4.5 (b): An AODV forwarding instance – (2)

Nevertheless, the table-driven method kept firm to its initially derived forwarding sequence of

12–14–9–7, notwithstanding the transformation of the network that is taking place. In Fig. 4.5

(b), the packets coming from node 14 bypassed the destination node 7 and hopped over to node 9

from where the packets reroute back to node 7. It would have been expected that Node 14

forwards the packets directly to the now closer node 7.

113

Figure 4.5 (c): An AODV forwarding instance – (3)

Figure 4.5 (d): An AODV forwarding instance – (4)

114

Fig. 4.5 (c) and (d) show more instances of the forwarding anomaly along this inflexible routing

sequence of the table-driven method, as packets are still routed round along 12–14–9–7 path,

even when the source and destination nodes 12 and 7 are closest to each other. Thus, the table-

driven method is not position-aware.

In comparison and in contrast to the foregoing, Fig. 4.6 (a) & (b) below demonstrates the

position-aware packets forwarding method of a geographic greedy algorithm, which we

simulated within the same VANET environment as the above.

Figure 4.6 (a) & (b): Snapshots of animated greedy packets forwarding as follows

Figure 4.6 (a): A location-aware greedy algorithm forwarding instance – (1)

Fig. 4.6a shows a snapshot commencement situation where the geographic greedy algorithm

forwards packets from source node 12 to the next-hop node 13, which subsequently hops onward

to the destination node 7.

115

Figure 4.6 (b): A location-aware greedy algorithm forwarding instance – (2)

The position-aware routing method makes appropriate changes in the choice of intermediate

hopping nodes as the network configuration changes. In Fig. 4.6 (b), node 12 now forwards

packets directly to node 7 in recognition of its currently close position. The greedy algorithm is

immediately responsive with efficient forwarding to next-hop in VANET.

116

5.0 DISCUSSION & FUTURE WORK

In this section we discuss the S* next-hop selection technique as well as the DIST mechanism’s

efficacy in VANET; and we describe some possible enhancements. We also describe some

future work prospects.

5.1 Efficiency of the S* forwarding technique

Overall, the S* method consistently delivered more packets than the basic Greedy method, as

revealed in the outcomes of the simulation results presented in section 4.0. Although the S*

packets forwarding technique performed functionally similar to the basic Greedy method in

VANET, as both algorithms are closely related; however, the S* algorithm definitely has an

influence on packets forwarding that has appeared better than that of the Greedy method. The

incoming unicast packets delivery rate graphs reflect S* as performing better than Greedy in all

cases evaluated. Moreover, S* significantly influence the unicast outgoing packets dispatches

more than Greedy.

Although the Greedy next-hop selection technique has not been ratified for VANET geographic

forwarding, yet it has been commonly used in several routing protocol designs [15][16]. The

prominence of Greedy is perhaps due to its use in the ground-breaking work of the GPSR[21]

design, or due to the intuitive front it presents as a ‘closest to the destination’ next-hop selector.

Nevertheless in comparison to Greedy, S* performance has proven to be a better next-hop

selector that moves packets more quickly to the destination; thus offering better packets delivery

rates.

Although the two algorithms’ simulation results graphs display some congruent areas, separate

differences also appeared in the performance patterns. The remarkably better performance of S*

in the outgoing packets delivery rates makes it more recommendable for use during dispatch or

117

on the sending-node side in VANET packets forwarding. Such an algorithm for the outgoing

packets stage could read as below.

 /*forward packets*/

 if (source node or packets dispatching_period)

{use S* forwarding}

 else

{ …};

The observed differences in the results graphs of S* and Greedy sometimes show better activity

of either of the algorithms in certain regions of the graphs; which also suggests that there is some

advantage to be derived in the integrative or complementary use of both algorithms during a

forwarding session. It may indeed be possible to switch between the techniques during a

forwarding session in accordance with some specified conditions encountered. Again, an

algorithm for a routine that constantly checks such suitability of conditions would be of the form

shown below.

/*constantly check VANET current environment and assign technique*/

 if (VANET condition A)

{use S* forwarding}

 elseif (VANET condition B)

{use Greedy forwarding}

 elseif (…)

{use …}…

Hence, we propose that a mix of relevant greedy forwarding techniques, including others

discussed in section 2.5 such as MFR, could be integrated as a hybrid-greedy technique that

implement geographic location-aware forwarding tasks. Similar proposals have been made for

the development of hybrid routing protocols [2][64][17][98].

In the current design of the S* technique, the forwarding program scans the destination node’s

present position for each packet at each hop. The high overhead resulting from such position

scans could be reduced by tuning the period of acquisition to some optimized time intervals.

118

Then each periodic scan would serve several packets that pass through the concerned node

within the determined interval.

5.2 Effectiveness of the orthogonal-to-baseline search space limitations

The results obtained concerning the VDIST vertical distance selection mechanism demonstrated

the effectiveness of the tool, as seen largely in the graphs of the unicast incoming packets

delivery rates. Among all the limits set for the unicast incoming Vdist graphs, as shown in Fig.

4.3 (a) - (e), the 500m Vdist most effectively delimits the multi-hop transmission range for the

unicast packets forwarding in the 1/216000m
2
 density network. It is surprising that the 500m

restriction outcome is better than that of 900m; but this could be attributable to lesser collisions,

leading to reduced loss of the unicast incoming packets [98] in the former case.

The unicast outgoing Vdist graphs of Fig. 4.4 (a) - (e) that exhibited uniformity could connote

that the concerned source nodes were unaffected in their connectedness to their immediate next-

hops which permits uninhibited packets dispatch. If so, this lack of inhibition is unexpected,

especially in the case of the narrow 20m VDIST_MAX restriction that should have experienced

much packets dropping due to probable instances of no qualified next-hop neighbour within

range.

The DIST mechanism in general shows its utility in limiting the area of path search in VANET

packets routing and forwarding schemes. The primary purpose for using such orthogonal-to-

baseline search space limiting mechanism is to select only a subset of neighbour nodes from a

most appropriate region within the transmission range of a forwarding node, from which an

optimally efficient next-hop is then chosen. The VDIST mechanism can be adapted to even

control neighbour list sizes so that fewer and only the most eligible next-hop nodes are involved.

119

We show some basic measures that extend the distance DIST mechanism when the method is to

be applied in developing restricted neighbour lists. The radius distance mechanism, RDIST,

which is depicted in Fig. 5.1, is a measure of the distance between a forwarding node and any

neighbour node within its range. For any node B with position coordinates that lies

within the range of a reference node A with position coordinates , then the RDIST of B

with respect to A is:

RDISTAB = (6.1)

N

RDIST

Figure 5.1 : RDIST radial distance measures of nodes within the range of node N

Then for any specified minimum radial limit RDIST_MIN or maximum limit RDIST_MAX, a

qualifying neighbour’s radial distance, nei_rdist, satisfies the condition:

RDIST_MIN ≤ nei_rdist ≤ RDIST_MAX (6.2)

Similarly, with reference to the VDIST_MAX mechanism that we have hitherto used, we can

have a minimum vertical distance to the baseline also as VDIST_MIN; then a qualifying

neighbour’s vertical distance, nei_vdist, satisfies the condition

 VDIST_MIN ≤ nei_vdist ≤ VDIST_MAX (6.3)

120

The authors in [80][101] have shown a requirement for adjustable transmission ranges in

VANET, through the employment of requisite transmitter devices. Excessively overlapping

transmission areas as shown in Fig. 5.2 is undesirable in VANET, since such a situation

exacerbates network congestion and packets collisions. Nodes, together with their associated

protocol, can therefore be designed to auto-sense density levels in VANET and adjust packets

forwarding ranges accordingly; as such, the VDIST mechanism can serve as an alternative to the

use of adjustable-range transmitter hardware. Thus, the transmission distances or effective

transmission limits of nodes in VANET can be flexibly controlled and optimized for reduced

packets collision effects in the network. This derivable DIST mechanism might be quite suitable

in the NFP [31] greedy technique (in section 2.5.2) that must function with an adjustable radio

transmission system would be useful.

Figure 5.2 (a) & (b): VANET scenario showing nodes transmission ranges

Fig. 5.2 (a) Highly overlapping transmission ranges of 885m radius

121

Fig. 5.2 (b) Moderately overlapping transmission ranges of 300m radius

As shown in Fig. 5.3, the VDIST mechanism is usable in fixing the transmission distance (or

forwarding range) in a flexible manner when it is used to delimit the transmission range of a

forwarding node.

RDIST_MAX

Transmission range

Forwarding node

Forwarding range / transmission distance

Figure 5.3: Transmission range delimiting using RDIST_MAX mechanism

122

In the figure, the inner circle denotes the currently fixed effective transmission range for the

node. Again, the effective transmission range is determinable based on the prevailing VANET

conditions, to offer maximal forwarding performance.

5.3 Case for dynamic hop-after-hop position-aware forwarding

The observed forwarding performance of the table-driven method in section 4.3 indicates the

problem with this approach in VANET, which adversely affects packets delivery success rate.

In table-driven systems, when a source has acquired the routing information to a destination, all

packets stream serially along the pre-determined route of a multi-hop sequence of nodes. The

same practice of following the path of a pre-set sequence of nodes also applies in routing

methods where the route map is embedded in packet headers. This mappings approach is

typically rigid and does not easily adjust to network reconfigurations to make better routing

choices; even though the protocol may at some stage re-initiate route discovery as in the case of

AODV [11]. The insensitivity or slow response of the method to positional changes results in

distorted routing pathways, and packets dropping when the nodes in the routing sequence go out

of the range of one another. Furthermore, much midway re-initiating of route discovery plans in

the VANET environment incurs excessive overhead and severely affects throughput. Hence, the

header-mapping approach that is characteristic of some location-aware MANET protocol

designs such as LAR [23] and GLAR [19] categorically renders them unsuitable for VANET.

Similarly, those protocols that are classified as greedy location-aware routing protocols for

VANET, e.g. GSR and A-STAR [15][14], but which use header-mapping approach are

unsuitable.

In contrast to the table-driven or header-mapping approaches, there is the class of location-aware

greedy routing designs, such as is in GPSR [21] that embed the destination node positional and

123

identity information in packets’ headers for routing. The positional information is used at each

forwarding node to determine the appropriate next-hop; in which case the decision-making is

dynamic and flexible as it is performed for each packet at each forwarding node; allowing the

choice of the next-hop to be made continually and in concert with the changing network

configuration. The greedy method results, shown in section 4.3, reveals the value in VANET of

this highly flexible routing method that selects next-hop on the fly. In comparison to the table-

driven method, the demonstration (Fig. 4.6 (a) – (b)) of the greedy packet swinging approach

(discussed in section 2.3.7) exhibits sustained packets streaming by ever adjusting itself to new

sequencing of hops along source to destination path. The very dynamic path reconstructing

exhibits an apparently unbroken connectivity leading to better packets delivery rates; compared

to the table driven system that demonstrated long periods of connectivity severances leading to

much packets dropping. We needed not show the graphs of packets delivery rates regarding

these two methods as it has generally been proved [22] [42] that the table-driven systems

perform poorly in VANET. However, we have shown the superior performance of packet

swinging routing, rather than header mapping, within the geographic greedy forwarding practice.

5.4 Future work

The S* method exhibited distinctive packets forwarding performance in the VANET

environment as has been shown by the results of the simulations. The efficacy of the S*

technique in VANET needs to be further investigated to validate its applicability. What factors

actually made S* to demonstrate significantly better results than Greedy forwarding in the

study? Although the O(n) of S* is supposed to be slightly higher than that of Greedy since the

former only performs an additional line of calculations in their almost similar codes; while based

on this fact Greedy should have performed better or there should have been generally closely

competing results rather than what we got. The understanding and more accurate explanations

124

of the contributing factors to better S* performance can give us lead into tuning such

phenomenon for improved performances still.

There are certain time windows during the routing span when Greedy performed extremely low

while S* enormously well, and vice-versa; particularly in the turnout of the 15-node

experiments. We attribute the very contrasting performances to situations of network

configurations that suit either of the forwarding techniques best. We hope to understand and

explain these situations in relation to each algorithm. The prospect of discovering and defining

which configurations in VANET simulation suits which technique most might be a daunting task

to dissolve due to the internal complexities of the environment. However, adequate perceptions

of the inner workings of the varying environment are a requirement for designing hybrid-greedy

systems.

The VDIST mechanism is best employable in dense networks, i.e. to curtail processing costs in

congested environments. We need to examine the mechanism’s performance in networks higher

than the 1/216000m
2
 density that we were limited. Although we hardcoded the parameters of

the distances we used in testing the mechanism, it normally should select its limits automatically

based on prevailing traffic volume. Another issue in the VDIST scheme that demands an

explanation is the results (in Fig. 4.4 (a) - (e)) that showed no apparent effect in the unicast

outgoing packets for the different set values of distance limits.

Although S* is a reactive technique, but in similarity to some other greedy approaches such as

GPSR, the neighbour lists at the nodes are maintained by a proactive beaconing scheme. It will

be interesting also to investigate the S* technique in a reactive beaconing environment as

suggested by [21] in the case of GPSR. Reactive beaconing performs neighbours’ position

discovery just when a node has data packet(s) to forward, thus saving substantially on neighbour

lists maintenance.

125

6.0 CONCLUSION

We have demonstrated the performance of the S* as an efficient geographic forwarding

technique for routing in VANET. We compared the S* routing technique with the Greedy

forwarding technique that have hitherto been employed in several VANET protocol designs. We

designed S*, based on the popular A* path search method; and supplemented it with the DIST

mechanism for limiting search-space for a forwarding node’s potential next-hop neighbours. We

utilized the EstiNet simulator to model and evaluate the S* method routing efficiency in packets

delivery rates of unicast incoming and outgoing packets over varied network densities. The

results surprisingly show the S* performance surpassing the Greedy method in packets delivery

success rates.

VANET environments do vary as a vehicular node transits from one district to another and at

different periods. These spatial and temporal variations in VANET demand that the applicable

routing protocol should be flexible in adjusting to the changing conditions. Hence, as deduced

from the results, we recommend a hybridized-greedy routing method that may include any

suitable subset of the forwarding techniques of MFR, NFP, NC, Greedy, CR and S* for

accomplishing optimum packets delivery in VANET.

The S* technique as a variant of the A* algorithm is a shortest path routing method that will

generally provide some advantages over the Greedy algorithm when applied in VANET or

MANET environments. An S* reduced-distance travel means quicker and higher packets

delivery rate. Shorter path also lead to faster packets transfers that aids network decongestion as

well as reducing transmission power consumptions [98]. A special feature of the S* algorithm

path search method is that it evaluates only the immediate children (that are denoted as

neighbours) of the forwarding node at each stage; and instantly discards the memory as soon as

the packet is forwarded to the next hop. The marginal memory requirement advantage of S* is

126

in contrast to the classic A* that requires large memory storage for maintaining its OPEN and

CLOSED queues, which easily surges in large networks.

The adjoining DIST mechanism in the S* method demonstrated the effectiveness of its utility in

VANET, especially in dense networks, such as are common in megacities, e.g. Lagos that is

shown in Appendix F. A dense network implies a high level of neighbour lists’ content at the

nodes, with the associated high cost of maintenance especially in the topologically unstable

VANET. Hence, the mechanism can support selection of neighbours from some defined region

within the transmission range. We also show the potentials of the DIST mechanism as a tool for

auto-adjusting and fixing maximum forwarding distance. The mechanism may therefore be a

suitable substitute for the adjustable-range transmitter hardware that is required alongside the

NFP next-hop selection technique. Similarly, it can serve for optimization of transmission range

overlap in dense network, to minimize packets collisions.

Through our demonstration of the gross inefficiency of the table-driven systems, we reinforce

the utility of the geographic location-aware method with emphasis on dynamic greedy

forwarding, i.e. packet swinging. Routing over pre-computed paths is problematic in VANET

due to its continuously changing topology. Whereas some study results, such as in the

evaluation of GSR and A-STAR protocols, have revealed the problems of pre-computed routing

path in VANET; yet the apparently better performance of these protocols against those that they

were compared have not helped in properly isolating the path mapping problem in VANET. In

the VANET environment, path-map in packet headers or table-described path quickly become

obsolete and invalid as nodes rapidly change positions. Therefore methods that forward packets

dynamically, which S* implement by design, are best suited for routing in VANET.

127

REFERENCES

[1] M. Conti and S. Giordano, “Mobile ad hoc networking: milestones, challenges, and new

research directions,” Communications Magazine, IEEE, vol. 52, pp. 85–96, Jan. 2014.

[2] W. Chen, R. K. Guha, T. J. Kwon, J. Lee, and Y. Hsu, “A survey and challenges in routing

and data dissemination in vehicular ad hoc networks,” Wireless Communications and Mobile

Computing, vol. 11, no. 7, pp. 787–795, 2011.

[3] A. Skordylis and N. Trigoni, “Efficient data propagation in traffic-monitoring vehicular

networks,” Intelligent Transportation Systems, IEEE Transactions on, vol. 12, no. 3, pp.

680–694, 2011.

[4] Sherali Zeadally, Ray Hunt, Yuh-Shyan Chen, Angela Irwin, and Aamir Hassan, “Vehicular

ad hoc networks (VANETS): status, results, and challenges,” Telecommunication Systems,

Springer US, vol. 50, no. 4, pp. 217–241, Aug. 2012.

[5] W Kellerer, C Bettstetter, C Schwingenschlogl, and P Sties, “(Auto) mobile communication

in a heterogeneous and converged world,” Personal Communications, IEEE, vol. 8, no. 6,

pp. 41–47, Dec-2001.

[6] E. Schoch, F. Kargl, M. Weber, and T. Leinmuller, “Communication patterns in VANETs,”

Communications Magazine, IEEE, vol. 46, no. 11, pp. 119–125, 2008.

[7] Ciprian Dobre and George Cristian Tudor, “Mobile Advertisement in Vehicular Ad-Hoc

Networks,” in Proc. of 16th Annual Conference on Web Technology, New Media,

Communications and Telematics Theory, Methods, Tools and Applications

(Euromedia’2011), London, 2011, pp. 43–49.

[8] Katrin Sjöberg, “Vehicular ad hoc networks – challenges, opportunities and

standardization,” Centre for Research on Embedded Systems, VOLVO, HALMSTAD, Apr-

2012.

[9] Yousef-Awwad Daraghmi and Ivan Stojmenovic, “Forwarding methods in data

dissemination and routing protocols for vehicular Ad Hoc networks,” Network, IEEE, vol.

27, no. 6, pp. 74–79, Dec. 2013.

[10] Reinaldo Bezerra Braga and Hervé Martin, “Understanding Geographic Routing in

Vehicular Ad Hoc Networks,” in GEOProcessing 2011, Guadeloupe, France.

[11] C. E. Perkins and E. M. Royer, “Ad-hoc On-demand distance vector routing,” presented

at the Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA’99.

Second IEEE Workshop on, 1999, pp. 90–100.

128

[12] David B. Johnson, David A. Maltz, Tomasz Imielinski, and Hank Korth, “Dynamic

source routing in ad hoc wireless networks,” in Mobile Computing, vol. 353, Springer US:

Kluwer Academic Publishers, 1996, pp. 153–181.

[13] Yun-Wei Lin, Yuh-Shyan Chen, and Sing-Ling Lee, “Routing Protocols in Vehicular Ad

Hoc Networks: A Survey and Future Perspectives,” Journal of Information Science and

Engineering, vol. 26, no. 3, pp. 913–932, May 2010.

[14] Kevin C. Lee, Uichin Lee, and Mario Gerla, “Survey of Routing Protocols in Vehicular

Ad Hoc Networks,” in Advances in Vehicular Ad-Hoc Networks: Developments and

Challenges, Mohamed Watfa, Ed. Hershey New York: IGI Global, 2010.

[15] S.-H. Cha, M.-W. Ryu, and K.-H. Cho, “A Survey of Greedy Routing Protocols for

Vehicular Ad Hoc Networks,” Smart Computing Review, vol. 2, no. 2, pp. 125–137, 2012.

[16] J. Bernsen and D. Manivannan, “Greedy routing protocols for vehicular ad hoc

networks,” presented at the Wireless Communications and Mobile Computing Conference,

2008. IWCMC’08. International, 2008, pp. 632–637.

[17] M. Al-Rabayah and R. Malaney, “A New Scalable Hybrid Routing Protocol for

VANETs,” IEEE Transactions on Vehicular Technology, vol. 61, no. 6, pp. 2625–2635,

2012.

[18] V. Naumov and T. R. Gross, “Connectivity-aware routing (CAR) in vehicular ad-hoc

networks,” presented at the INFOCOM 2007. 26th IEEE International Conference on

Computer Communications. IEEE, 2007, pp. 1919–1927.

[19] N.-C. Wang, J.-S. Chen, Y.-F. Huang, S.-M. Wang, and S. Chen, “A Greedy Location-

Aided Routing Protocol for Mobile Ad Hoc Networks,” presented at the WSEAS

International Conference. Proceedings. Mathematics and Computers in Science and

Engineering, 2009.

[20] P. K. Sahu, E.-K. Wu, J. Sahoo, and M. Gerla, “BAHG: Back-Bone-Assisted Hop

Greedy Routing for VANET’s City Environments,” 2013.

[21] B. Karp and H.-T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless

Networks,” presented at the Proceedings of the 6th annual international conference on

Mobile computing and networking, 2000, pp. 243–254.

[22] Mauve M, Widmer J, and Hartenstein H, “A survey on position-based routing in mobile

ad hoc networks,” IEEE Network, vol. 15, no. 6, pp. 30–39, Dec. 2001.

[23] Y.-B. Ko and N. H. Vaidya, “Location-aided routing (LAR) in mobile ad hoc networks,”

presented at the Proceedings of the 4th annual ACM/IEEE international conference on

Mobile computing and networking, 1998, pp. 66–75.

129

[24] Christian Lochert, Hannes Hartenstein, Jing Tian, Holger Füßler, Dagmar Hermann, and

Martin Mauve, “A Routing Strategy for Vehicular Ad Hoc Networks in City Environments,”

in Proceedings. Intelligent Vehicles Symposium, 2003., Columbus OH USA, 2003, pp. 156–

161.

[25] Boon-Chong Seet, Genping Liu, Bu-Sung Lee, Chuan-Heng Foh, Kai-Juan Wong, and

Keok-Kee Lee, “A-STAR: A Mobile Ad Hoc Routing Strategy for Metropolis Vehicular

Communications,” in Proceedings, Third International IFIP-TC6 Networking Conference,

Athens, Greece, 2004, vol. 3042, pp. 989–999.

[26] Moez Jerbi, Sidi-Mohammed Senouci, and Yacine Ghamri-Doudane, “Towards Efficient

Routing in Vehicular Ad Hoc Networks,” UbiCC Journal - Special issue of UbiRoads 2007,

vol. Ubiroads07.

[27] Jing Zhao and Guohong Cao, “VADD: Vehicle-Assisted Data Delivery in Vehicular Ad

Hoc Networks,” in 25th IEEE International Conference on Computer Communications,

Barcelona, Spain, 2006, pp. 1–12.

[28] J. Zhao and G. Cao, “VADD: Vehicle-assisted data delivery in vehicular ad hoc

networks,” presented at the IEEE infocom, 2006, vol. 6, p. 57.

[29] Carlos de Morais Cordeiro and Dharma Prakash Agrawal, “Routing in Ad-Hoc

Networks,” in Ad Hoc and Sensor Networks Theory and Applications, 2nd ed., World

Scientific, 2011, p. 664.

[30] Stefan Rührup, “Theory and Practice of Geographic Routing,” in Ad Hoc and Sensor

Wireless Networks: Architectures, Algorithms and Protocols, vol. 1, Hai Liu, Xiaowen Chu,

and Yiu-Wing Leung, Eds. Bentham Science, 2009.

[31] H. Liu, A. Nayak, and I. Stojmenovic, Geographic Routing in Wireless Sensor and

Actuator Networks. In book: Wireless Sensor and Actuator Networks: Algorithms and

Protocols for Scalable Coordination and Data Communication. Wiley, 2010.

[32] A. Autere, “Extensions and Applications of the A* Algorithm,” Dissertation for the

degree of Doctor of Science in Technology, Helsinki University of Technology (TKK),

Finland, 2005.

[33] L. H. O. Rios and L. Chaimowicz, “A survey and classification of a* based best-first

heuristic search algorithms,” in Advances in Artificial Intelligence–SBIA 2010, Brazil, 2010,

pp. 253–262.

[34] Rafia Inam, Daniel Cederman, and Philippas Tsigas, “A* Algorithm for Graphics

Processors,” presented at the THIRD SWEDISH WORKSHOP ON MULTI-CORE

COMPUTING - MCC10, Sweden, 2010.

130

[35] Tatsuya Ohshima,, Pipaporn Eumthurapojn,, Liang Zhao,, and Hiroshi Nagamochi, “An

A∗ Algorithm Framework for the point-to-point Time-Dependent Shortest Path Problem,” in

9th International Conference, Revised Selected Papers, Dalian, China, 2010, vol. 7033, pp.

154–163.

[36] N. Loulloudes, G. Pallis, and M. D. Dikaiakos, “The dynamics of vehicular networks in

urban environments,” arXiv preprint arXiv:1007.4106, 2010.

[37] C. Sommer, I. Dietrich, and F. Dressler, “Realistic simulation of network protocols in

vanet scenarios,” presented at the 2007 Mobile Networking for Vehicular Environments,

2007, pp. 139–143.

[38] F. J. Martinez, C. K. Toh, J.-C. Cano, C. T. Calafate, and P. Manzoni, “A survey and

comparative study of simulators for vehicular ad hoc networks (VANETs),” Wireless

Communications and Mobile Computing, vol. 99, no. 7, pp. 1189–1212, 2009.

[39] H. Boeglen, B. Hilt, P. Lorenz, J. Ledy, A.-M. Poussard, and R. Vauzelle, “A survey of

V2V channel modeling for VANET simulations,” presented at the Conference on Wireless

On-Demand Network Systems and Services (WONS), 2011 Eighth International, 2011, pp.

117–123.

[40] M. Fiore, J. Harri, F. Filali, and C. Bonnet, “Vehicular mobility simulation for

VANETs,” presented at the Simulation Symposium, 2007. ANSS’07. 40th Annual, 2007, pp.

301–309.

[41] Elizabeth M. Belding-Royer, “Routing Approaches In Mobile Ad Hoc Networks,” in

Mobile Ad Hoc Networking, Stefano Basagni, Marco Conti, Silvia Giordano, and Ivan

Stojmenovic, Eds. New Jersey: John Wiley & Sons, Inc., IEEE Press, pp. 275–300.

[42] Maria Kihl, Mihail Sichitiu, Ted Ekeroth, and Michael Rozenberg, “Reliable

Geographical Multicast Routing in Vehicular Ad-hoc Networks.” .

[43] Imrich Chlamtaca, Marco Conti, and Jennifer J.-N. Liu, “Mobile ad hoc networking:

imperatives and challenges,” vol. 1, no. 1, pp. 13–64, Jul. 2003.

[44] Xiaobo Chen and Danya Yao, “An empirically comparative analysis of 802.11n and

802.11p performances in CVIS,” in ITS Telecommunications (ITST), Taipei, 2012, pp. 848 –

851.

[45] Shimin Sun, Jonghyun Kim, Yunho Jung, and Keecheon Kim, “Zone-based Greedy

Perimeter Stateless Routing for VANET,” presented at the International Conference on

Information Networking, 2009. ICOIN 2009., Chiang Mai, 2009, pp. 1–3.

[46] J N Al-Karaki and A E Kamal, “Routing techniques in wireless sensor networks: a

survey,” Wireless Communications, IEEE, vol. 11, no. 6, pp. 6–28, Dec-2004.

131

[47] Bob Gray, “Soldiers, Agents and Wireless Networks: A Report on a Military

Application,” DoD, Manchester UK, Proceedings of the International Conference on

Practical Application of Intelligent Agents and Multi-Agents, 5th (PAAM 2000), Apr. 2000.

[48] Gayathri Chandrasekaran, “VANETs: The Networking Platform for Future Vehicular

Applications.” Department of Computer Science, Rutgers University, 2008.

[49] TOYOTA, “The Future Vehicular Network Architecture,” Toyota ITC, USA, 2010.

[50] Jang-Ping Sheu, “Routing Protocols, chapter 4,” National Tsing Hua University, Taiwan,

Apr-2014.

[51] Kemal Akkaya and Mohamed Younis, “A Survey on Routing Protocols for Wireless

Sensor Networks.” .

[52] Mark A. Perillo and Wendi B. Heinzelman, “Wireless Sensor Network Protocols.” .

[53] Wendi B. Heinzelman, Anantha P. Chandrakasan, and Hari Balakrishnan, “An

Application-Specific Protocol Architecture for Wireless Microsensor Networks,” IEEE

Transactions on Wireless Communications, vol. 1, no. 4, pp. 660 – 670, Oct. 2002.

[54] Fan Li and Yu Wang, “Routing in vehicular ad hoc networks: A survey,” Vehicular

Technology Magazine, IEEE, vol. 2, no. 2, pp. 12–22, Jun. 2007.

[55] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, “A distance routing effect

algorithm for mobility (DREAM),” presented at the Proceedings of the 4th annual

ACM/IEEE international conference on Mobile computing and networking, 1998, pp. 76–

84.

[56] Chiara Buratti, Andrea Conti, Davide Dardari, and Roberto Verdone, “An Overview on

Wireless Sensor Networks Technology and Evolution,” MDPI Sensors, vol. 9, no. 9, 2009.

[57] Jennifer J.-N. Liu and Conti M, “Mobile Ad Hoc Networking with a View of 4G

Wireless: Imperatives and Challenges,” in Mobile Ad Hoc Networking, Basagni S, Conti M,

Giordano S, and Stojmenovic I, Eds. New Jersey: Wiley-IEEE Press, 2004, pp. 1–45.

[58] Charles E. Perkins and Pravin Bhagwat, “DSDV - Highly Dynamic Destination-

Sequenced Distance-Vector Routing (DSDV) for Mobile Computers,” in Proceedings of the

conference on Communications architectures, protocols and applications, London, 1994, pp.

234–244.

[59] Jacquet P, Muhlethaler P, Clausen T, Laouiti A, Qayyum A, and Viennot, L., “Optimized

link state routing protocol for ad hoc networks,” in IEEE International Multi Topic

Conference, 2001, Lahore, Pakistan, 2001, pp. 62 – 68.

132

[60] Jérôme Haerri, Fethi Filali, and Christian Bonnet, “Performance Comparison of AODV

and OLSR in VANETs Urban Environments under Realistic Mobility Patterns,” in Med-

Hoc-Net 2006, Lipari, Italy, 2006.

[61] Spaho E, Ikeda M, Barolli L, Xhafa F, Younas M, and Takizawa M, “Performance of

OLSR and DSDV Protocols in a VANET Scenario: Evaluation Using CAVENET and NS3,”

in 2012 Seventh International Conference on Broadband, Wireless Computing,

Communication and Applications (BWCCA),, Victoria BC Canada, 2012, pp. 108 – 113.

[62] M Bouhorma, H Bentaouit, and A Boudhir, “Performance Comparison of Ad-hoc

Routing Protocols AODV and DSR,” in International Conference on Multimedia Computing

and Systems, 2009, Ouarzazate, Morocco, 2009, pp. 511–514.

[63] A Tuteja, R Gujral, and S thalia, “Comparative Performance Analysis of DSDV, AODV

and DSR Routing Protocols in MANET Using NS2,” presented at the 2010 International

Conference on Advances in Computer Engineering (ACE), Bangalore, Karnataka, India,

2010, pp. 330–333.

[64] Z J Haas, “A New Routing Protocol for the Reconfigurable Wireless Networks,”

presented at the 1997 IEEE 6th International Conference on Universal Personal

Communications Recordx, San Diego CA, 1997, vol. 2, pp. 562–566.

[65] Marwa Altayeb and Imad Mahgoub, “A Survey of Vehicular Ad hoc Networks Routing

Protocols,” International Journal of Innovation and Applied Studies, vol. 3, no. 3, pp. 829–

846, Jul. 2013.

[66] Holger Füßler, Martin Mauve, Hannes Hartenstein, and Michael Käsemann, “Location-

Based Routing for Vehicular Ad-Hoc Networks,” presented at the MobiHoc ’02, Atlanta

Georgia, 2002.

[67] Christian Lochert, Martin Mauve, Holger Füßler, and Hannes Hartenstein, “Geographic

Routing in City Scenarios,” ACM SIGMOBILE Mobile Computing and Communications

Review, vol. 9, no. 1, pp. 69–72, Jan. 2005.

[68] Valery Naumov, Rainer Baumann, and Thomas Gross, “An Evaluation of InterVehicle

Ad Hoc Networks Based on Realistic Vehicular Traces,” in 7th ACM international

symposium on Mobile ad hoc networking and computing Pages 108-119, New York USA,

2006.

[69] Gregory G. Finn and Joseph D. Touch, “Network Construction and Routing in

Geographic Overlays.” USC/Information Sciences Institute, Jul-2002.

[70] Qixiang Sun and Hector Garcia-Molina, “Using Ad-hoc Inter-vehicle Networks For

Regional Alerts,” Stanford, 2005.

133

[71] Sushant Jain, Kevin Fall, and Rabin Patra, “Routing in a Delay Tolerant Network,” in

Proceedings of the 2004 conference on Applications, technologies, architectures, and

protocols for computer communications, Portland OR USA, 2004, pp. 145–158.

[72] Yuh-Shyan Chen and Yun-Wei Lin, “Routing Protocols in Vehicular Ad Hoc Networks,”

in Telematics Communication Technologies and Vehicular Networks: Wireless Architectures

and Applications, IGI Global, 2010, pp. 206–228.

[73] Hao Wu, Richard Fujimoto, Randall Guensler, and Michael Hunter, “MDDV: A

Mobility-Centric Data Dissemination Algorithm for Vehicular Networks,” in Proceedings of

the 1st ACM international workshop on Vehicular ad hoc networks, Philadelphia, PA, USA,

2004.

[74] “Greedy algorithm,” Wikipedia. Wikimedia Foundation, Inc., Jan-2014.

[75] S S Manvi, M S Kakkasageri, and C V Mahapurush, “Performance Analysis of AODV,

DSR, and Swarm Intelligence Routing Protocols In Vehicular Ad hoc Network

Environment,” presented at the 2009 International Conference on Future Computer and

Communication, Kuala Lumpar, 2009, pp. 21–25.

[76] J. Fukuyama, “A probabilistic protocol for multihop routing in VANETs,” Journal of

Electrical and Computer Engineering, vol. 2010, p. 42, 2010.

[77] Jing Tian and Lu Han, “Spatially aware packet routing for mobile ad hoc inter-vehicle

radio networks,” in Intelligent Transportation Systems, 2003., 2003, vol. 2, pp. 1546 – 1551.

[78] Athanasiso Vasilakos, Yan Zhang, and Thrasyvoulos V. Spyropoulos, Eds., “Message

Dissemination in Vehicular Networks,” in Delay Tolerant Networks: Protocols and

Applications, Boca Raton FL USA: Auerbach Publications, CRC Press, 2011.

[79] Katsaros K, Dianati M, and Long Le, “Effective implementation of location services for

VANETs in hybrid network infrastructures,” in 2013 IEEE International Conference on

Communications Workshops (ICC),, Budapest, 2013, pp. 521 – 525.

[80] Ting-Chao Hou and Victor O K Li, “Transmission Range Control in Multihop Packet

Radio Networks,” IEEE Transactions on Communications, vol. COM-34, no. 1, pp. 38–44,

1986.

[81] Ivan Stojmenovic and Xu Lin, “Power aware localized routing in wireless networks,”

IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 11, pp. 1122–1133,

Nov. 2001.

[82] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia, “Compass Routing on

Geometric Networks,” in 11 TH CANADIAN CONFERENCE ON COMPUTATIONAL

GEOMETRY, Vancouver, 1999, pp. 51–54.

134

[83] D. Szer, F. Charpillet, and S. Zilberstein, “MAA*: A heuristic search algorithm for

solving decentralized POMDPs,” arXiv preprint arXiv:1207.1359, 2012.

[84] Ismail Chabini and Shan Lan, “Adaptations of the A* algorithm for the computation of

fastest paths in deterministic discrete-time dynamic networks,” IEEE Transactions on

Intelligent Transportation Systems, vol. 3, no. 1, pp. 60–71, Mar. 2002.

[85] Razvan Stanica, Emmanuel Chaput, and André-Luc Beylot, “Simulation of vehicular ad-

hoc networks: Challenges, review of tools and recommendations,” Computer Networks,

Elsevier, Science Direct, vol. 55, no. 14, pp. 3179–3188, Oct. 2011.

[86] M. Piórkowski, M. Raya, A. Lezama Lugo, P. Papadimitratos, M. Grossglauser, and J.-P.

Hubaux, “TraNS: realistic joint traffic and network simulator for VANETs,” ACM

SIGMOBILE Mobile Computing and Communications Review, vol. 12, no. 1, pp. 31–33,

Jan-2008.

[87] Sommer C and Dressler F, “Progressing toward realistic mobility models in VANET

simulations,” IEEE Communications Magazine, vol. 46, no. 11, pp. 132–137, Nov. 2008.

[88] Yanmin Zhu, Chao Chen, and Min Gao, “An evaluation of vehicular networks with real

vehicular GPS traces,” EURASIP Journal on Wireless Communications and Networking, Jul.

2013.

[89] Evjola Spaho, Leonard Barolli, Gjergji Mino, Fatos Xhafa, and Vladi Kolici, “VANET

Simulators - A survey on Mobility and Routing Protocols,” in 2011 International

Conference on Broadband and Wireless Computing, Communication and Applications

(BWCCA), Bacelona, 2011, pp. 1–10.

[90] David R. Choffnes and Fabián E. Bustamante, “STRAW - An Integrated Mobility and

Traffic Model for VANETs,” in Proceedings of the 2nd ACM international workshop on

Vehicular ad hoc networks, pp. 69 – 78.

[91] Li Zhiyuan and Hu Jinhong, “Framework of Real VANET Simulation Research,” in

2011 Third International Conference on Multimedia Information Networking and Security

(MINES), Shanghai, 2011, pp. 136–140.

[92] Marco Fiore and Jérôme Härri, “The Networking Shape of Vehicular Mobility,” in

roceedings of the 9th ACM international symposium on Mobile ad hoc networking and

computing, Hong Kong, 2008, pp. 261–272.

[93] “ns (simulator),” Wikipedia. Wikimedia Foundation, Inc., Mar-2014.

[94] Christoph Sommer, Reinhard German, and Falko Dressler, “Bidirectionally Coupled

Network and Road Traffic Simulation for Improved IVC Analysis,” IEEE TRANSACTIONS

ON MOBILE COMPUTING, vol. 10, no. 1, pp. 3–15, Jan. 2011.

135

[95] EstiNet, “EstiNet Sales Quotation Document.” EstiNet, 23-Aug-2013.

[96] Shie-Yuan Wang, Chih-Liang Chou, and Chun-Ming Yang, “EstiNet OpenFlow Network

Simulator and Emulator,” IEEE Communications Magazine, vol. 51, no. 9, pp. 110–117,

Sep. 2013.

[97] EstiNet, “Introduction of EstiNet Network Simulator.” Technologies Inc., 2013.

[98] Brad Nelson Karp, “Geographic Routing for Wireless Networks,” Doctor of Philosophy

in the subject of Computer Science, Harvard University, Cambridge, Massachusetts, 2000.

[99] “A* search algorithm,” Wikipedia. Wikimedia Foundation, Inc.,, Mar-2014.

[100] Luis Felipe Urquiza Aguiar, “Design and implementation of routing protocols with

anonymity for vehicular ad-hoc networks in urban environments,” Master’s Thesis,

Universitat Politecnica De Catalunya, Barcelonatech, Barcelona, Spain, 2012.

[101] Hideaki Takagi and Leonard Kleinrock, “Optimal Transmission Ranges for Randomly

Distributed Packet Radio Terminals,” IEEE TRANSACTIONS ON COMMUNICATIONS,,

vol. COM -32, no. 3, pp. 246–257, Mar. 1984.

136

APPENDICES

Appendix A: S* Forwarding code sections

Appendix A1: Usermodule02.cc C/C++ file content showing some code sections

 1 /*

 2 * Copyright (c) from 2000 to 2013

 3 *

 4 * EstiNet Technologies Inc.

 5 * All Rights Reserved.

 6 *

 7 * This source code file is part of the EstiNet network simulator and emulator.

 8 * It is an intellectual property of EstiNet Technologies Inc..

 9 * Without written permissions obtained from EstiNet Technologies Inc., it

 10 * is prohibited by law to disclose, transmit, post, or distribute this

 11 * source code file to any one or any place on the Internet that is

 12 * unauthorized by EstiNet Technologies Inc. to receive this source code file.

 13 *

 14 * 3/31/2011

 15 */

 16

 17 /*

 18 * Ad hoc On-Demand Distance Vector (UserModule02) Routing

 19 * reference: draft-ietf-manet-UserModule02-12.txt

 20 */

 21

 22 #include <sys/types.h>

 23 #include <sys/socket.h>

 24 #include <netinet/in.h>

 25 #include <arpa/inet.h>

 26 #include <fcntl.h>

 27 #include <sys/uio.h>

 28 #include <unistd.h>

 29 #include <stdio.h>

 30 #include <stdlib.h>

 31 #include <string>

 32 #include <assert.h>

 33 #include <regTable.h>

 34 #include <scheduler.h>

 35 #include <typTable.h>

 36 #include <estinet_api.h>

 37 #include <ethernet.h>

 38 #include <ip.h>

 39 #include <random.h>

 40 #include <module/user-defined/user_module_02.h>

 41 #include <modBinder.h>

 42 #include <math.h> ////atanda

 43

 44

 45 using namespace UserModule02d;

 46

 47 #define LINK_LAYER_RETRY

 48 /* #define LINK_LAYER_DROP */

 49

137

 50

 51 MODULE_GENERATOR(UserModule02);

 52

 53 UserModule02::UserModule02(u_int32_t type, u_int32_t id, struct plist* pl, const char *name)

 54 : NslObject(type, id, pl, name)

 55 {

 56 s_flowctl = DISABLED;

 57 r_flowctl = DISABLED;

 58

 59 rreq_id = 0; /* ? */

 60 link_fail_list.slh_first = 0;

 61 bcache.slh_first = 0;

 62

 63 acc_rreq = 0;

 64 acc_rerr = 0;

 65

 66 qcur_ =0;

 67 rd_head = rd_tail = 0;

 68 qmax_ = 5;

 69

 70 /* bind input file name */

 71 vBind_int("HELLO_INTERVAL", &HELLO_INTERVAL);

 72 vBind_int("ALLOWED_HELLO_LOSS", &ALLOWED_HELLO_LOSS);

 73 vBind_int("ACTIVE_ROUTE_TIMEOUT", &ACTIVE_ROUTE_TIMEOUT);

 74 vBind_int("DELETE_PERIOD", &DELETE_PERIOD);

 75 vBind_int("NET_DIAMETER", &NET_DIAMETER);

 76 vBind_int("NODE_TRAVERSAL_TIME", &NODE_TRAVERSAL_TIME);

 77 vBind_int("RREQ_RETRIES", &RREQ_RETRIES);

 78 vBind_int("RREQ_RATELIMIT", &RREQ_RATELIMIT);

 79 vBind_int("RERR_RATELIMIT", &RERR_RATELIMIT);

 80

 81 vBind_int("VDIST_MAX", &VDIST_MAX); //////////////////atanda////////////////

 82 }

 83

 84 UserModule02::~UserModule02() {

 85 }

 86

 87 int UserModule02::init() {

 88

 89 mip = GET_REG_VAR(get_port(), "IP", u_long *);

 90

 91 Rt_entry *r = new Rt_entry;

 92

 93 // the first entry is for its own

 94 r->rt_dst = *mip;

 95 r->rt_nexthop = *mip;

 96 r->rt_valid_dst_seqno = true;

 97 r->rt_seqno = 1;

 98 r->rt_hopcount= 0;

 99 r->rt_flags = RTF_VALID;

 100 r->rt_time = INFINITY_LIFETIME;

 101

 102 ////////////////////////atanda, initialize next-hop

 103 nexthop_AStar = *mip;

 104 my_NID = get_nid();

 105 //GetNodeLoc(my_NID, my_X, my_Y, my_Z);

 106

 107

 108 rtable.insert(r);

 109

 110 MILLI_TO_TICK(hello_interval_, (u_int64_t)HELLO_INTERVAL);

 111 MILLI_TO_TICK(active_route_timeout_, (u_int64_t)ACTIVE_ROUTE_TIMEOUT);

 112 MILLI_TO_TICK(node_traversal_time_, (u_int64_t)NODE_TRAVERSAL_TIME);

 113 MILLI_TO_TICK(delete_period_, (u_int64_t)DELETE_PERIOD);

 114

 115 MY_ROUTE_TIMEOUT = 2 * ACTIVE_ROUTE_TIMEOUT;

 116 MILLI_TO_TICK(my_route_timeout_, (u_int64_t)MY_ROUTE_TIMEOUT);

138

 117 NET_TRAVERSAL_TIME = (3 * NODE_TRAVERSAL_TIME * NET_DIAMETER /2);

 118 MILLI_TO_TICK(net_traversal_time_, (u_int64_t)NET_TRAVERSAL_TIME);

 119 PATH_DISCOVERY_TIME = (2 * NET_TRAVERSAL_TIME);

 120 MILLI_TO_TICK(path_discovery_time_, (u_int64_t)PATH_DISCOVERY_TIME);

 121

 122 MILLI_TO_TICK(route_check_timer_, (u_int64_t)ROUTE_CHECK);

 123 MILLI_TO_TICK(rreq_check_timer_, (u_int64_t)PENDING_RREQ_CHECK);

 124 MILLI_TO_TICK(recent_rreq_list_timer_, (u_int64_t)RECENT_RREQ_LIST_CHECK);

 125 MILLI_TO_TICK(accumulated_rreq_rerr_timer_, (u_int64_t)ACCUMULATED_RREQ_RERR_TIMER);

 126 MILLI_TO_TICK(nei_list_check_timer_, (u_int64_t)NEI_LIST_CHECK);

 127 MILLI_TO_TICK(sendhello_timer_, (u_int64_t)SENDHELLO_TIMER);

 128 MILLI_TO_TICK(link_fail_list_check_timer_, (u_int64_t)LINK_FAIL_LIST_CHECK);

 129 /* MILLI_TO_TICK(printLoc_timer_, (u_int64_t)5000); */

 130

 131 BASE_OBJTYPE(type);

 132 type = POINTER_TO_MEMBER(UserModule02, sendHello);

 133 SendHello_timer.setCallOutObj(this, type);

 134 SendHello_timer.start((sendhello_timer_ + Random()%100000), 0);

 135

 241 int UserModule02::RREQ_retry(){

 242

 350

 351 int UserModule02::CheckRecentRREQ() {

 370 int UserModule02::ClearAccRREQ_RERR() {

 383 int UserModule02::CheckNeiList() {

 446 int UserModule02::CheckLinkFailList() {

 463 int UserModule02::recv(ePacket_ *pkt) {

 464

 465 u_long dst_ip, src_ip;

 466

 467 Packet *p;

 468 struct UserModule02_packet *my_pkt;

 469 Rt_entry *dst_route;

 470 /* int lastseqno; */

 471

 472 assert(pkt&&(p=(Packet *)pkt->DataInfo_));

 473 GET_PKT(p, pkt);

 474

 475 char pkttype[5];

 476 strncpy(pkttype, p->pkt_get(), 4);

 477 pkttype[4]='\0';

 478

 479 my_pkt = (struct UserModule02_packet *)p->pkt_get();

 480

 481

 482 if (strcmp(pkttype,"AODV") == 0){

 483 dst_ip = my_pkt->dst_ip;

 484 src_ip = my_pkt->src_ip;

 485 }

 486 else {

 487 IP_DST(dst_ip, p->pkt_sget());

 488 IP_SRC(src_ip, p->pkt_sget());

 489

 490 }

 491 //////////////atanda, BEGIN-if it is not UserModule02 protocol packet

 492 /* Receive normal packet, we must help it forward to

 493 * next node ,or if it is my packet, I pass it to interface layer.

 494 */

 495 if (bcmp(my_pkt->pro_type, "AODV", 4) != 0)

 496 {

 516 if ((dst_ip == *mip) || is_ipv4_broadcast(get_nid(), dst_ip))

 517 {

 518 return (put(pkt, recvtarget_));

 519 } else

 520 {

 521 ///////////atanda, BEGIN-ASSIGNMENT OF A* NEXTHOP

 522 nexthop_AStar = getnexthopAStar(dst_ip);

139

 523

 524 p->rt_setgw(nexthop_AStar);

 525 p->pkt_setflow(PF_SEND);

 526 return (sendToQueue(pkt)); //atanda, END-ASSIGNMENT OF A* NEXTHOP

 527

 528 /* hwchu:

 529 * There is no chance for this packet to enter the kernel,

 530 * so we decrement its TTL here.

 531 */

 532 u_char ttl;

 533

 534 GET_IP_TTL(ttl, p->pkt_sget());

 535 if (ttl <= 1)

 536 {

 537 return put(pkt, recvtarget_);

 538 }

 539 IP_DEC_TTL(p->pkt_sget());

 540 }

 541 ///////////////////////////atanda, rt and rtable issues.

 542 //atanda, BEGIN-CODE DISABLED

 543 // int lookup_result = rtable.rt_lookup(dst_ip);

 633 // }else if (lookup_result == RT_NOT_EXIST){

 634 // }

 640 // freePacket(pkt);

 641 // return (1);

 642 // ////////////atanda, END-if it is not UserModule02 protocol packet

 643 /////////////////atanda, END-CODE DISABLED

 644 }

 645 if (bcmp(my_pkt->pro_type, "AODV_RREQ", 10) == 0){

 646

 647 struct RREQ_msg *my_rreq;

 648

 821 // update the neighbor list

 822 nei_list.update(my_rrep->rrep_dst_addr, (GetCurrentTime() + (ALLOWED_HELLO_LOSS * hello_interval_)));

 978 // not RREQ,RREP,RERR packet

 979 else{

 980 printf("[%u]: receive AODV_unknown pkt (type:%s) at tick=%llu\n",

 981 get_nid(), my_pkt->pro_type, GetCurrentTime());

 982 //assert(0);

 983 return 1;

 984 }

 985

 986 freePacket(pkt);

 987 return (1);

 988

 989 }

 990

 991

 992 int

 993 UserModule02::send(ePacket_ *pkt) {

 994

 995 Packet *p;

 996 u_long dst_ip, src_ip;

 997

 998 assert(pkt&&(p=(Packet *)pkt->DataInfo_));

 999

1000 GET_PKT(p, pkt);

1001

1002 IP_DST(dst_ip, p->pkt_sget());

1003 IP_SRC(src_ip, p->pkt_sget());

1004

1005 //////////////////atanda, BEGIN-this code segment was copied from recv() to be able to use my_pkt to distinct non-UserModule02 with

if-else condition down below////////

1006 struct UserModule02_packet *my_pkt;

1007 my_pkt = (struct UserModule02_packet *)p->pkt_get();

1008

1009 ////////////////////////END-this code segment was copied from recv()/////////////////

140

1010

1011 if (is_ipv4_broadcast(get_nid(), dst_ip)){

1012 // It's a broadcast pkt. Just send it.

1013 sendToQueue(pkt);

1014 return 1;

1015 }

1016

1017 int lookup_result = rtable.rt_lookup(dst_ip);

1018 if (lookup_result != RTF_VALID) {

1019

1020 if (!ctrl_table.ifExist(dst_ip)) {

1021

1022 ctrl_table.insert(dst_ip, GetCurrentTime()+net_traversal_time_);

1023 if (ctrl_table.attachPkt(dst_ip, pkt) < 0) {

1024 freePacket(pkt);

1025 return (1);

1026 }

1027

1028 if (acc_rreq <= RREQ_RATELIMIT) {

1029 sendRREQ(dst_ip, NET_DIAMETER);

1030 acc_rreq++;

1031 }

1032 return (1);

1033

1034 }else{

1035 if (ctrl_table.attachPkt(dst_ip, pkt) < 0)

1036 freePacket(pkt);

1037 return (1);

1038 }

1039 }

1040 else {

1041

1042 ///////atanda, BEGIN-set in if-else//

1043 if (bcmp(my_pkt->pro_type, "AODV", 4) != 0)

1044 {

1045 nexthop_AStar = getnexthopAStar(dst_ip);

1046 p->rt_setgw(nexthop_AStar);

1047 sendToQueue(pkt);

1048 }///////atanda, END-set in if///////////////////////////////

1049 else

1050 {

1051 //atanda, this is existing code segment

1052 Rt_entry *rt0 = rtable.rt_get(dst_ip);

1053

1054 // each time the route is used for transmission,

1055 // update its lifetime

1056 rt0->rt_time = GetCurrentTime() + active_route_timeout_;

1057

1058 p->rt_setgw(rt0->rt_nexthop);

1059 sendToQueue(pkt);

1060 }

1061 return (1);

1067 int UserModule02::sendToQueue(ePacket_ *pkt) {

1068

1069 int (NslObject::*upcall)(MBinder *);

1070 /* Do flow control for myself with s_queue */

1189 * Regulary Send Broadcast HELLO message.

1190 */

1191 int UserModule02::sendHello() {

1192

//atanda, though this function is not disabled, it is disabled where it is called; and so it is for some others

1295 int UserModule02::updateRT(u_long dst, u_long nexthop, u_int32_t seqno, u_int16_t hopcount, u_int64_t lifetime) {

1296

1694 }

1695

1696 //atanda, ASTAR ENGINE CODE//

1697 int UserModule02::getnexthopAStar(u_long dst_ip)

141

1698 {

1699 //initialize to myself

1700 u_long bestnexthop = *mip;

1701

1702 int dst_NID;

1703 double dst_X, dst_Y, dst_Z;

1704

1705

1706 dst_NID = ipv4addr_to_nodeid(dst_ip);

1707

1708 GetNodeLoc(my_NID, my_X, my_Y, my_Z);

1709 GetNodeLoc(dst_NID, dst_X, dst_Y, dst_Z);

1710

1711 //BEGIN Calculate baseline values

1712 double a, b, c;

1713

1714 /* Compute the aX + bY + C = 0 line equation formed by (x0, y0) and (x1, y1). //atanda, template obtained from obstacles.cc*/

1715 if (dst_Y == my_Y)

1716 {

1717 a = 0;

1718 b = 1;

1719 c = -1 * my_Y;

1720 if (dst_X == my_X)

1721 a = b = c = 0;

1722 }

1723 else if (dst_X == my_X)

1724 {

1725 a = 1;

1726 b = 0;

1727 c = -1 * my_X;

1728 } else

1729 {

1730 b = -1;

1731 a = (dst_Y - my_Y) / (dst_X - my_X);

1732 c = my_Y - my_X * a;

1733 } ///END Calculate baseline values

1734

1735 //my estimate straight line distance to destination

1736 double my_h = sqrt(((my_X - dst_X)*(my_X - dst_X)) + ((my_Y - dst_Y)*(my_Y - dst_Y)));

1737 int nei_NID;

1738 double nei_f, nei_g, nei_h; //For f = g + h

1739 double least_f = 10000000; //initialize with an infinite big value

1740 double nei_vdist;

1741 double nei_X, nei_Y, nei_Z;

1742

1743 Nei_entry *p_nei = nei_list.getHead();

1744

1745 //BEGIN Traverse list of my neighbors and make selection

1746 while (p_nei)

1747 {

1748 nei_NID = ipv4addr_to_nodeid(p_nei->nei_addr);

1749

1750 if (nei_NID == dst_NID)

1751 {

1752 bestnexthop = p_nei->nei_addr;

1753 break;

1754 }

1755 else //assess for nexthop

1756 {

1757 GetNodeLoc(nei_NID, nei_X, nei_Y, nei_Z);

1758

1759 ///perpendicular distance to baseline, VDST = |((aX+bY+c)/sqrt((a*a)+(b*b)))|

1760 nei_vdist = fabs(((a * nei_X) + (b * nei_Y) + c) / sqrt((a * a) + (b * b)));

1761

1762 nei_h = sqrt(((nei_X - dst_X)*(nei_X - dst_X)) + ((nei_Y - dst_Y)*(nei_Y - dst_Y)));

1763

1764 //positive advance and restrict range of nodes allowed from baseline

142

1765 if ((nei_h < my_h) && (nei_vdist < VDIST_MAX)) // int VDIST_MAX .h file

1766 {

1767 //Calculate f = distance g + distance h

1768 nei_g = sqrt(((my_X - nei_X)*(my_X - nei_X)) + ((my_Y - nei_Y)*(my_Y - nei_Y)));

1769 nei_f = nei_g + nei_h;

1770

1771 if (nei_f < least_f)

1772 {

1773 least_f = nei_f;

1774 bestnexthop = p_nei->nei_addr;

1775 }

1776 }

1777 }

1778 p_nei = p_nei->next;

1779 }

1780 return bestnexthop;

1781 }//getnexthopAStar(

1782

1783

1784

1785 //////////////////////////////BEGIN- PASTED odv.rt.cc FILE FROM HERE//

1786 /// Nei_entry //////////////////////////////////

1787 Nei_entry::Nei_entry(u_long addr, u_int64_t lifetime) {

1788 nei_addr = addr;

1789 nei_time = lifetime;

1790 next = NULL;

1791 }

1792

1793 Nei_entry::~Nei_entry() {

1794 }

1795

1796 /// Neighbors //////////////////////////////////

1797 Neighbors::Neighbors() {

1798 nei_head = NULL;

1799 }

1800

1801 Neighbors::~Neighbors() {

1802 Nei_entry *n = nei_head;

1803 Nei_entry *tmp;

2148 bool CtrlTable::ifExist(u_long addr) {

2360

2361 u_char Unreach_list::unreach_count() {

2362 return unr_count;

2363 }

2364

2365 ///////////////////////////////END- PASTED odvrt.cc///

2366

2367

143

Appendix A2: Usermodule02.h header file content showing some code sections

 1 /*

 2 * Copyright (c) from 2000 to 2013

 3 *

 4 * EstiNet Technologies Inc.

 5 * All Rights Reserved.

 6 *

 7 * This source code file is part of the EstiNet network simulator and emulator.

 8 * It is an intellectual property of EstiNet Technologies Inc..

 9 * Without written permissions obtained from EstiNet Technologies Inc., it

 10 * is prohibited by law to disclose, transmit, post, or distribute this

 11 * source code file to any one or any place on the Internet that is

 12 * unauthorized by EstiNet Technologies Inc. to receive this source code file.

 13 *

 14 * 3/31/2011

 15 */

 16

 17 #ifndef __user_module_02_h__

 18 #define __user_module_02_h__

 19

 20 #include <event.h>

 21 #include <object.h>

 22 #include <mylist.h>

 23 #include <timer.h>

 24 #include <packet.h>

 25 //#include <route/UserModule02/mstate.h>

 26

 27 #define INFINITY_HOPCNT 0xff

 28 #define INFINITY_LIFETIME 0x7fffffff

 29 #define UserModule02_MAXQUEUELEN 30

 30

 31 #define TTL_THRESHOLD 7

 32

 33 #define LINK_FAIL_LIFETIME 500 // ms

 34 #define LINK_FAIL_THRESHOLD 4 // times

 35

 36 // millisec

 37 #define SENDHELLO_TIMER 50

 38 #define ROUTE_CHECK 300

 39 #define PENDING_RREQ_CHECK 50

 40 #define RECENT_RREQ_LIST_CHECK 300

 41 #define ACCUMULATED_RREQ_RERR_TIMER 1000

 42 #define NEI_LIST_CHECK 300

 43 #define LINK_FAIL_LIST_CHECK 1000

 44

 45

 46

 47

 48 namespace UserModule02d{

 49

 50 class UserModule02;

 51

 52 /*

 53 * Neighbors entry and Neighbors List

 54 */

 55

 56 class Nei_entry {

 57 public:

 58 u_long nei_addr; // ip address

 59 u_int64_t nei_time; // expire time

 60

 61 Nei_entry *next;

 62 public:

 63 Nei_entry(u_long addr, u_int64_t lifetime);

144

 64 ~Nei_entry();

 65 };

 66

 67 class Neighbors {

 68 private:

 69 Nei_entry *nei_head;

 70

71 public:

 72 Neighbors();

 73 ~Neighbors();

 74

343 class UserModule02 : public NslObject {

344 // default

345 int HELLO_INTERVAL; //1000

346 int ALLOWED_HELLO_LOSS ; //2

347 int ACTIVE_ROUTE_TIMEOUT; //3000

348 int DELETE_PERIOD; //3000

349 int NET_DIAMETER; //15

350 int NODE_TRAVERSAL_TIME; //40 ms

351 int RREQ_RETRIES; //5

352 int RREQ_RATELIMIT; //10/per sec

353 int RERR_RATELIMIT; //10/per sec

354

355 int VDIST_MAX; // 1000 default /////////atanda//////////////////

356

357 int MY_ROUTE_TIMEOUT;

358 int NET_TRAVERSAL_TIME;

359 int PATH_DISCOVERY_TIME;

360

361 private:

362 timerObj SendHello_timer;

363 timerObj DelHello_timer;

364 timerObj RT_timer;

365 timerObj SendRREQ_timer;

366 timerObj RecentRREQ_timer;

367 timerObj AccRREQ_RERR_timer;

368 timerObj Nei_List_timer;

369 timerObj PrintLoc_timer;

370

371 // interval tmp variable

372 u_int64_t hello_interval_;

373 u_int64_t delete_period_;

374

375 u_int64_t active_route_timeout_;

376 u_int64_t my_route_timeout_;

377 u_int64_t node_traversal_time_;

378 u_int64_t net_traversal_time_;

379 u_int64_t path_discovery_time_;

380

381 u_int64_t route_check_timer_;

382 u_int64_t rreq_check_timer_;

383 u_int64_t recent_rreq_list_timer_;

384 u_int64_t accumulated_rreq_rerr_timer_;

385 u_int64_t nei_list_check_timer_;

386 u_int64_t sendhello_timer_;

387 u_int64_t link_fail_list_check_timer_;

388 u_int64_t printLoc_timer_;

389

390 u_long *mip; // my IP address

391

392 int rreq_id; // my rreq ID

393

394 ///////////////////atanda/////////////////////

395 u_long nexthop_AStar;

396 int my_NID;

397 double my_X, my_Y, my_Z;

398

145

399

400 UserModule02_RtTable rtable; // my Routing Table

401 CtrlTable ctrl_table; // my UserModule02queue table

402 LocalRepairTable local_repair_table;

403 SLIST_HEAD(,Link_fail_entry) link_fail_list;

404 SLIST_HEAD(,BroadcastID) bcache; // Broadcase ID cache

405 Neighbors nei_list; // neighbor list

406

407 // accumulated count for RREQ/RERR, will be clean to 0 every second

408 int acc_rreq;

409 int acc_rerr;

410

411 int qmax_; // UserModule02queue's max

412 int qcur_; // UserModule02queue current count

413 ePacket_ *rd_head; // UserModule02queue's head

414 ePacket_ *rd_tail;

415

416

417 public:

418

419 UserModule02(u_int32_t type, u_int32_t id, struct plist* pl, const char *name);

420 ~UserModule02();

421

422 int init();

423 int recv(ePacket_ *pkt);

424 int send(ePacket_ *pkt);

425 int sendHello();

426 int miew();

427

428 int HelloTimer();

429 int RTTimer();

430 int RREQ_retry();

431 int CheckRecentRREQ();

432 int ClearAccRREQ_RERR();

433 int CheckNeiList();

434 int CheckLinkFailList();

435

436

437 int UpdateHello(struct HELLO_msg *);

438 int routing(u_long dst, Packet *p);

439 int updateSimpleRRoute(u_long prevhop_ip);

440 int updateRT(u_long dst, u_long nexthop, u_int32_t seqno, u_int16_t hopcount, u_int64_t lifetime);

441

442 int sendRREQ(u_long dst, u_char ttl);

443 int forwardRREQ(struct RREQ_msg *my_rreq, u_char cur_ttl);

444 int sendRREP(u_long dst, u_long src, u_long toward, u_int8_t hopcount, u_int32_t seqno, u_int64_t lifetime);

445 int forwardRREP(struct RREP_msg *my_rrep, u_char cur_ttl);

446 int sendRERR(u_long delip, Unreach_list *);

447 int bcastRERR(Unreach_list *);

448

449 int push(void);

450 int sendToQueue(ePacket_*);

451 int processBuffered(u_long);

452 int LinkLayerCall(ePacket_ *);

453 int PrintIP(u_long);

454 int getnexthopAStar(u_long); ///atanda

455 };

456

457 }; //namespace UserModule02d

458

459 #endif /* __user_module_02_h__ */

460

146

Appendix A3: Usermodule02.mdf file content sections that define user interface dialog box for

the entry of parameters as shown in Fig. 3.9.

1 ModuleSection

2 HeaderSection

3 ModuleName UserModule02

4 ClassName UserModule02

5

6 NetType Wireless

7 GroupName User_Defined

8 PortsNum SinglePort

9

10 Version UserModule02_001

11 Author EstiNet

12 CreateDate 2/26/02

13 Introduction "This is a UserModule02 module (Use this)."

14

15 Parameter HELLO_INTERVAL 1000 local

16 Parameter ALLOWED_HELLO_LOSS 2 local

17 Parameter ACTIVE_ROUTE_TIMEOUT 3000 local

18 Parameter DELETE_PERIOD 3000 local

19 Parameter NET_DIAMETER 15 local

20 Parameter NODE_TRAVERSAL_TIME 40 local

21 Parameter RREQ_RETRIES 5 local

22 Parameter RREQ_RATELIMIT 10 local

23 Parameter RERR_RATELIMIT 10 local

24 Parameter VDIST_MAX 1000 local

25 EndHeaderSection

26

175 End

176

177 Begin TEXTLINE VDIST_MAX

178 Caption "VDIST_MAX Limit "

179 Scale 10 288 200 30

180 ActiveOn MODE_EDIT

181 Enabled TRUE

182

183 Type INT

184 Comment ""

185 End

186

187 Begin LABEL l_VDIST_MAX

188 Caption "(meters)"

189 Scale 215 288 60 30

190 ActiveOn MODE_EDIT

191 Enabled TRUE

192 End

193

194 Begin BUTTON b_ok

195 Caption "OK"

196 Scale 270 21 60 30

197 ActiveOn MODE_EDIT

147

198 Action ok

199 Comment "OK Button"

200 End

201

202 Begin BUTTON b_cancel

203 Caption "Cancel"

204 Scale 270 53 60 30

205 ActiveOn MODE_EDIT

206 Action cancel

207 Comment "Cancel Button"

208 End

209 EndInitVariableSection

210

211 ExportSection

212 Caption ""

213 FrameSize 0 0

214 EndExportSection

215 EndModuleSection

148

Appendix B: Street maps

Appendix B1: An Openstreetmaps segment figure of the Lagos Island; with dimensions of

125000m x 7500m.

Appendix B2: An Openstreetmaps segment figure of a street in the city of Windhoek, with

dimensions of 17000m x 1190m

149

Appendix C: Node densities

Appendix C1: A VANET graph showing of 100-node 1/540000m
2
 density. The short vertical

line depicts a distance of 810m.

Appendix C2: A GUI close-up view of vehicular nodes in the EstiNet simulator

150

Appendix D: Networking protocols stack view in the EstiNet simulator

EstiNet simulator’s protocol stack view, showing the insertion of a user developed routing

protocol module (i.e. Greedy or S* routing module).

151

Appendix E: Confidence interval determinant

The following are different output graphs that result from the re-run of a 15-node topology

VANET simulation file. The graphs exhibit a common packets delivery rate at level 56 in this

case. We therefore deem the outputs of the simulator as being consistent.

152

Appendix F: A dense VANET scenario

Appendix F1: Dense traffic on a Lagos street

NMhttp://connectnigeria.com/articles/2012/08/14/lagos-traffic-the-new-laws-and-solutions/

Accessed 08/12/2014

http://connectnigeria.com/articles/2012/08/14/lagos-traffic-the-new-laws-and-solutions/

