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ABSTRACT 

Design flood estimation is an important task that is required in the planning and design of 

many hydraulic structures. This study was therefore aimed at developing the regional growth 

curves for estimation of floods of various return periods in the Limpopo catchment at either 

gauged or ungauged sites. Finding the most suitable distribution to flood sample and selecting 

the appropriate parameter estimation method are of great importance for flood frequency 

analysis. In this study, the newer methods of the L-moments and LH-moments using the 

Regional Flood Frequency Analysis (RFFA) technique have been used to characterise the 

flood data of this region. The study focussed on the RFFA of the Limpopo catchment, 

Botswana, which comprises of 13 hydrometric stations. The heterogeneity test has revealed 

that the Limpopo catchment using LH-moments has been identified as “acceptably 

homogeneous” through all levels ��, � = 1, 2, 3, 4, that is, (L1 to L4); and therefore, this 

method was found the best technique to characterize the Limpopo flood data.  

Three extreme value distributions, that is, generalized extreme value (GEV), generalized 

logistic (GLO) and generalized Pareto (GPA), through different levels of the LH-moments (L 

to L4) have been applied to develop the regional parameters and describe the annual 

maximum flood data obtained from 13 sites in the Limpopo catchment. The Z-statistic criteria 

were used in the distribution selection, considering the respective LH-moments (L to L4) and 

as such the GEV distribution using LH-moments at level 2 (L2) has been found the best 

distribution of all other distributions. For final selection of the appropriate method of 

parameter estimates, the performances of GEV distribution using L-moments and LH-

moments (L2) have been assessed by evaluating the relative Root Mean Square Error 

(RMSE). The results of the RMSE showed that the LH-moments of level 2 (L2) based on 

GEV has been found most suitable and more efficient with minimum RMSE for obtaining 

improved values of flood peaks than the L-moments. 

Regional flood frequency relationships are developed for estimation of floods of various 

return periods for ungauged sites using the LH-moment (L2) based on the GEV distribution. A 

general relationship between mean annual peak flood, drainage area and rainfall has been 

developed. 

Keywords: L-moments; LH-moments; regional flood frequency analysis, Limpopo 

catchment, regional growth curve 
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CHAPTER 1 

1. INTRODUCTION 

1.1 General 

Flood is one of the most important disasters which can destroy the total physical and 

socio-economic environmental set up of the area and occurs almost in all part of the 

world. A study by Kundzewict (2003) showed that in recent decades, flood losses 

have increased worldwide. This study further indicated that an increase in flood risk is 

also foreseen for the future.  

Flooding is also the most prevalent disaster in Africa (EMWIS, 2006); and another 

study by Conway (2009), revealed that Africa will suffer from floods with greater 

frequency. In the region of Southern Africa, represented by the Southern Africa 

Development Community (SADC), nations have experienced abnormally high rainfall 

and disastrous floods causing damage to infrastructure, loss of life and property 

(SADC, 2006). In another report by Holloway et al. (2013), about 14 million of the 

people in SADC region were affected due to the flood events from 2000-2012. 

Botswana is arid to semi-arid with highly erratic rainfall. Because of this reason, most 

of the rivers originating in the country are ephemeral with an average flow over a 

period of between 10 to 70 days in a year (Parida, 2004). The mean annual rainfall 

ranges from over 650mm in the north-east to less than 250mm in the south-west. The 

national average rainfall is 475mm per year (MEWT, 2011). Most rain occurs in the 

months from October to April, and falls as localized showers and thunderstorms. Over 

90% of the rainfall occurs in the summer months; and sometimes, 70% to 90% of the 

annual rainfall may occur in only one month (NWMPR, 2006). As a result of this, 

floods are experienced in the streams and rivers of Botswana very frequently, which 

have impacted on loss of life and economy. 

The consequences of these floods thus should be taken in to account when any 

strategically important hydraulic structure is planned to be implemented at a site of 

interest. 
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1.2 Background 

Major villages, towns and cities in Botswana fall within the Limpopo river system 

where major economic activities have been taking place. Accordingly, Limpopo 

catchment is the main potential water source to meet the current and future water 

needs to these demand centres. 

Though many of the rivers in Limpopo catchment are gauged as shown in Figure 1.1, 

the gauging stations are largely far spaced from each other or are congested at certain 

localities.  

 

Figure 1.1: Locality map of the study area 

(Source: Department of Water Affairs, Botswana) 
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Data from some gauging stations are often discontinuous and with many gaps. In 

general, data records are short, with a range of being 12-39 years. Griffis and 

Stedinger (2007) in their work found that estimates of magnitude and frequency of 

floods using streamflow-gauging stations with shorter records of annual peak flow 

data will have higher standard errors or uncertainties when compared to estimates 

using stream gauges with longer annual peak flow records. On the other hand, when 

the data are scanty or short, the coefficient of variation, skewness and kurtosis of the 

distribution of the measured flood discharges will likely be higher than the 

corresponding coefficients of the parent flood distribution, and as such it distorts the 

statistical distribution (Vogel and Kroll, 1991). Because of this reason, it restricts the 

prediction period of the floods and poor estimates of the large flood quantiles 

(Rahman et al., 2014). This case always occurs in arid and semi-arid areas. Similarly, 

problems like data gap, measurement technique or errors, outliers, historical floods 

and parameter estimation methods can also influence the statistical analysis that could 

give poor estimates of design floods (for example Cong and Xu, 1987; Potter and 

Walker, 1981; Ben-Gal, 2004; Hosking and Wallis, 1997). The data gap could be 

attributed because of discontinuous peak-flow record due to missing or unavailable or 

destruction or removal of the gauge, incomplete peak-flow record because the gauge 

might not be operational for short period of time. 

Data gap can result in erroneous peak-flow magnitude-frequency relations if missing 

peaks are simply excluded from the dataset and subsequent analysis (Doheny and 

Dillow, 1999). The same study advises that the retention, modification, or deletion of 

an outlier can substantially alter the statistical parameters computed from the dataset, 

especially if the peak-flow record is relatively short; and thus, the presence of low or 

high outliers must be determined, and appropriate adjustments to the relation must be 

made. The problem of historical data is subject to systematic error due to change of 

environmental conditions such as alterations in the infrastructure of the river's 

catchment. 

Errors due to measurement techniques could be either due to a random error where 

measurable values being inconsistent when repeated measures of a constant attribute 
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or quantity are taken, or systematic error where the errors could not be determined by 

chance but are introduced by an inaccuracy inherent in the system. 

While the above is true, choice of appropriate design flood estimation method is 

essential such that the errors associated with various circumstances mentioned above 

could be minimized. Though there are a number of routes of estimating design floods, 

the two main routes are the method of statistical flood frequency analysis (FFA) of 

peak flows and the method of unit hydrograph synthesis of the flood corresponding to 

a design storm (Sutcliffe, 1978). Unlike the later method, the FFA approach assumes 

that the flow statistical properties of the past will occur in the future and hence it is 

applicable for long, short or no flow records available at the design site, as in the case 

of the Limpopo catchment.  

However, one of the major problems in hydrological design using the FFA approach 

is the estimation of maximum floods due to the fact that the magnitude of these events 

varies quite largely from year to year, and it is impossible to forecast in future times. 

Thus, estimating floods of large return periods is difficult because extreme events are 

by definition rare and the relevant data record is often short. Because of this 

hydrological problem, it is essential to consider observations from several 

independent sites with similar properties which can help to create a large sample 

through Regional Flood Frequency Analysis (RFFA) such that the accuracy of flood 

estimate can be improved. In other words, the longer the period of record, the better 

the likelihood of capturing the range of possible events. Moreover, RFFA is used to 

improve the record at regular measuring sites, and to provide estimates of frequency 

characteristics at sites where no data are available. This method derives a relation 

between flood magnitude and return period. Therefore, RFFA approach has been used 

in this study to estimate the design flood quantiles at desired recurrence intervals at 

gauged and ungauged sites in the Limpopo catchment. 

1.3 Description of the Study Area 

The Limpopo River Basin which discharges directly to the Indian ocean is apparently 

shared by four SADC Member States, i.e. Botswana, South Africa, Zimbabwe and 

Mozambique. However, this study area is the Limpopo Basin (hereinafter called 
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Limpopo Catchment) in Botswana. Accordingly, only stations within Botswana of this 

river system have been considered for RFFA. This catchment is located in eastern part 

of Botswana, and generally the elevation of the catchment declines from 1240m in the 

northeast to 542m in the east and rises to 1373m in the southeast. The upstream and 

downstream parts of the catchment are hilly areas, and the middle area is a flat lake 

catchment. This catchment has 13 stream gauging sites, all equipped with peak annual 

flood data collection capability. The locations of the study area and the 13 gauging 

sites used in the analysis are shown in Figure 1.2. 

 



6 

 

 

 

Figure 1.2: Limpopo Catchment and location of its stations 

(Source: Department of Water Affairs, Botswana) 
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1.4 Statement of the Problem 

The study area covers eastern corridor of Botswana where major economic activities 

take place. The Limpopo catchment contributes about 80% of the water needs in 

Botswana.  

While this is the fact on the ground, there is limited data in the Limpopo catchment, 

which makes it difficult to understand the hydrological processes in this river system. 

Moreover, it could be understood that the density of gauging stations in the catchment 

is low, and the operation and maintenance of the stream gauging networks are 

difficult and annual flood series in the Limpopo catchment are too short to allow for a 

reliable estimation of extreme events or there is no flow record available at the site of 

interest.  

Experiences have revealed that when the data are scanty (less than 30), it is often 

difficult to arrive at a proper choice of statistical distribution as well as method of 

parameter estimation. This situation occurs in arid and semi-arid areas like Botswana. 

Although it is not possible to forecast the flood events, it is possible to predict such 

events using newer parameter estimation techniques which yield least bias and 

minimum variance such that the statistical results assist with future planning in this 

catchment. This will be done by conducting a regional flood frequency analysis 

technique, based on index-flood procedures, which is a practical means of providing 

flood information at sites with little or no flow data available for the purposes of 

planning, design, construction and operation of water resources projects or decision 

process relating to hydraulic works or flood alleviation programs and in general for 

water resources management within the Limpopo catchment. 

1.5 Objective of the Research and Corresponding Research Questions 

The general objective of this Dissertation is to develop a regional growth curve that 

can be used for estimation of flood quantiles at desired recurrence intervals at the 

gauged sites. The regional growth curve can also be used with the catchment 

characteristics for design flood estimations at the desired recurrence interval for 

ungauged stations in the catchment. 
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The main research questions are also derived based on the specific objectives, which 

shall be addressed and solved throughout this study process. 

With the above background and general objective of this study, the specific objectives 

of the research and the corresponding research questions are tabulated in Table 1.1: 

Table 1.1: Specific Objectives and Research Questions 

Sl 

No. 
Specific Objectives Research Questions 

1 
Identify geographical 

continuous regions for gauged 

sites where more than 10 years 

flow data have been recorded, 

and determine homogeneous 

regions,  

What is the condition to satisfy a 

homogeneous region? 

 

2 
Select an appropriate 

distribution that can be used 

for parameters and quantiles 

estimation at desired 

recurrence intervals, 

What are the procedures to be followed in 

selection of the best distribution to fit the 

observed data and give least bias quantile 

estimates and hydrologic risk across the 

Limpopo Catchment? 

3 Develop regional growth 

curves based on the observed 

data of the gauged sites that 

can be used for estimation of 

flood quantiles at specified 

risks (design floods) at either 

gauged or ungauged sites, 

which can be used for design 

of hydraulic structures. 

• Which newer methods should be 

applied to estimate the parameters and 

thus quantiles of the chosen 

distribution at desired recurrence 

intervals? 

•  What procedure is to be used to 

develop a regional growth curve? 

• How the relationship between 

quantiles and physical characteristics 

will be developed for ungauged sites? 
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1.6 Significance of the Study 

There are limited researches undertaken in the Limpopo catchment that could be due 

to limited information at the sites of interest and thus it has become a challenge to 

have the results of design floods at desired recurrence intervals for the implementation 

of hydraulic infrastructure. However, most of the major rivers in Botswana and water 

infrastructure assets such as dams are located within the Limpopo catchment and is 

viewed as one of the potential source to meet the current and future water needs such 

as domestic, mining, industrial, commercial and agriculture.  

In order to have reliable design flood information, use of appropriate newer parameter 

estimation methods like L-moments and LH-moments is important. Hence, it is our 

motivation to carry out this study in this region because on one hand the LH-moments 

based on regional flood frequency analysis have recently emerged, and on the other 

hand relatively more data for longer period of time have been collected after the 

previous studies were conducted and as such the design events can be obtained with 

greater reliability. Therefore, the hydrological information (results) of this study is 

believed to be helpful for the relevant authorities for water resources project planning 

and flood alleviation programs within the river system. 

1.7 Scope of the Study 

The study basically covers the area in the eastern part of Botswana where most of the 

streams in the country are located, and where a number of hydraulic infrastructure like 

dams do exist, under construction or proposed to be constructed in the future. 

Accordingly, the maximum design flood at desired recurrence intervals for the 

streams within the Limpopo catchment is essential generally for water resources 

management within this catchment. For this purpose, 13 gauged stations within the 

Limpopo basin in Botswana have been considered based on annual maximum flood 

data observed between 1968 and 2008. 

For estimation of the design floods at desired design risks (recurrence intervals), 

Regional Flood Frequency Analysis approach using the newer methods of L-moments 

and LH-moments procedures will be utilized to establish regional homogeneity as 
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well as to arrive at the quartile estimations and development of a regional growth 

curve. 
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CHAPTER 2 

2  LITERATURE REVIEW 

2.1 Related Previous Studies 

Previous studies by Farquharson et al. (1992) developed regional growth curves for 

sample arid areas in the world where Botswana was also included. The regional 

growth so developed could be suitable for large-scale application, but for small-scale 

application for the purpose of designing strategic hydraulic structures in Limpopo 

catchment, a specific regional growth curve for this particular region should be 

developed. Another study was undertaken by SMEC (NWMPR, 2006) on surface 

water resources of Botswana to perform certain specified hydrological analysis that 

are required for hydraulic design purposes. However, the study was carried out with 

limited flood information. A study on the flood characteristics of selected rivers in 

Botswana using L-moments was also carried out by Parida (2004), which was 

addressed based on limited data. 

2.2 Probability Concepts and Theoretical Background 

Events that cannot be predicted precisely are often called random. Many if not most 

of the inputs to, and processes that occur in, water resources systems are to some 

extent random.  

Suppose a random variable X may take k different values, with the probability that X 

= xi defined to be P(X = xi) = pi. The probabilities pi must satisfy the following:  

0 < pi< 1 for each i          (1) 

p1 + p2 + ... + pk = 1         (2) 

2.2.1 Random Variables and Distributions 

Let X denote a continuous random variable, and x a possible value of that random 

variable X. For any real-valued random variable X, its cumulative distribution 
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function (CDF) FX(x), equals the probability that the value of X is less than or equal to 

a specific value or threshold x: 

FX(x) = P(X ≤ x)     (3) 

FX(x) is the nonexceedance probability for the value x. 

The probability density function (PDF) is the derivative of the CDF, so that: 

�
(�) = ���(�)�� ≥ 0         (4) 

2.2.2 Quantiles and Return Period 

According to Loucks and Beek (2005), the simplest approach to describing the 

distribution of a random variable is to report the value of several quantiles. If X is a 

continuous random variable (example river/stream flow), then in the region here fX(x) 

≥ 0, the quantiles are uniquely defined and are obtained by solution of 

FX(xp) = p          (5) 

The pth quantile is also the 100p percentile. In floodplain management and the design 

of flood control structures, the 100-year flood x0.99 is a commonly selected design 

value (Loucks and Beek, 2005). 

In a general way, Maidment (1993) states that the 100p percentile is often called the 

100(1-p) percent exceedance events because it will be exceeded with probability 1-p. 

The return period or recurrence interval is often specified rather than the exceedance 

probability. For example, the annual maximum flood-flow exceeded with a 1 percent 

probability in any year, or chance of 1 in 100, is called the 100 year flood. In many 

hydraulic engineering applications, it may be necessary to determine the probability 

of occurrence of extreme flood events. Accordingly, the relationship between 

probability of occurrence -probability of exceedance (P) - and the recurrence interval 

(T) is given by: 

� = �� �� � = ��          (6) 



13 

 

where T is expressed as occurrence of a given flood event on an average once in T-

years or may not occur at all in the T-years but may occur say 2 times in the period of 

next 2T-years and likewise. Equation (6) can also be written in terms of probability of 

non-exceedance (say p=1-P) as: 

� = �(�) = 1 − � = 1 − ��        (7) 

Here, there are two ways that return period can be understood (Maidment, 1993): 

(i) In a fixed T-year period, the expected number of exceedances of the T-year 

event is exactly 1 if the distribution of floods does not change over that period; 

thus on average one flood greater than the T-year flood level occurs in a T-

year period. 

(ii) Alternatively, if floods are independent from year to year, the probability that 

the first exceedance of level xp occurs in year k is the probability of (k-1) years 

without an exceedance followed by a year in which the value of X exceeds xp: 

P(exactly k years until X ≥ xp) = p
k-1

(1-p)     (8) 

The above is also useful in assessing the risk involved while designing a hydrologic 

structure. Or in other words, to compute the probability of occurrence of at least one 

occurrence of the designed flow during the life time of a structure which also can be 

expressed as: 

!"#$ = %1 − &'( �) * �� [1 − (1 − �),]       (9) 

where, L = n = Design life of the structure and T=Design recurrence interval in 

years=1/p. 

Taking various considerations of hydrologic risk and life span of the hydraulic 

structure, T is suggested to lie between 50 and 1000 years (Parida, 1998).  

2.3 Choice of Frequency Distribution 

Among other difficulties in FFA are related to the identification of the appropriate 

statistical distribution for describing data and to the estimation of the parameters of a 
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selected distribution. Accordingly, collective evidence about distributional behaviour 

of floods on many rivers needs to be studied (WMO, 1989). Several fundamental 

techniques have been used in the past for evaluating the suitability of different 

distributions for annual maximum flood series such that both the descriptive and 

predictive abilities are met. The two approaches viz: behavioural analysis and 

robustness procedures have been utilized in recent days for the choice of the 

appropriate distribution (details are given in WMO (1989)). Nevertheless, the 

robustness approach has been followed in our analysis of selecting the appropriate 

distribution because it tests whether a distribution and method of parameter 

estimation, considered jointly are insensitive to departures from assumptions made in 

their use. Several fundamental issues arise when selecting a distribution (Maidment, 

1993) such as (1) the true distribution from which the observations are drawn, (2) 

robust estimates of design quantiles and hydrologic risk, and (3) consistency of the 

proposed distribution with the available data for a site. Because there is no firm 

theoretical basis for choice between distributions, goodness of fit tests are often used 

to select the appropriate distribution which best fits the flood data (Sutcliffe, 1978). 

He further indicated in his work that earlier investigations suggested that the three 

parameter distributions were found to be better or more flexible than the two 

parameter distributions. According to WMO (1989), robustness studies indicate that 

quantile estimates using two parameter distributions suffer more from bias than those 

based on three parameter ones.  

Though various probability distributions have been assumed to characterize various 

random variables in hydrology (Dingman, 2008), thus, the most commonly used three 

parameter distributions have been summarized by Hosking and Wallis (1997) as GPA, 

GEV, GLO, LN3 and PE3. Apparently, the true distribution is probably too complex 

to be of practical use – rather, the newer methods of parameter estimation techniques 

like L-moments and LH-moments skewness-kurtosis and CV-skewness ratio diagrams 

are good for investigating what simple families of distributions are consistent with 

available data sets for a region. Standard goodness-of-fit criteria such as Z-statics 

have been used to see how well a member of each family of distribution can fit a 

sample. The distribution that best fit each data set is considered robust, which is used 

for parameter estimates and yields reliable flood quantile and risk estimates.  
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A recent study by Parida (2004) on Limpopo/Makgadikgadi region using L-moments 

reported that GEV distribution fitted well along with another possible distribution viz: 

Generalized Logistic (GLO). Wang (1997) identified that the GEV distribution by 

using LH-moments was formulated and found that GEV fitted well to characterize the 

upper part of distributions and larger events in data.  Similarly, other studies 

(Gheidari, 2013; Bhuyan, et al., 2009; and Shabri, 2008) reported that GEV 

distribution along other distribution functions (namely: GPA and GLO) using LH-

moments performed better than other distributions. However, the LH-moment has 

been developed for only three most commonly used distributions viz: the GLO, GEV 

and GPA, while the L-moment has been developed for most of the common 

distributions including the above three distributions. In line with this, the frequency 

distribution analysis in this study will be carried out using the aforementioned three 

distributions to compare the performance of the two newer parameter estimation 

methods and thus for the selection of the least bias candidate. 

2.4 Methods of Parameter Estimation 

2.4.1 Historical Development of Different Methods 

The flood estimation procedure generally emphasises on two aspects viz: on the 

appropriate choice of a statistical model and a robust method of parameter estimation, 

such that both descriptive and predictive aspects are well covered (Cunnane, 1987). In 

other words, the descriptive property relates to the requirement that the chosen 

distribution shape resembles the observed sample distribution of floods and that 

random samples drawn from the chosen model distribution must be statistically 

similar to the properties of real flood series; and that of descriptive property relates to 

the requirement that quantile estimates are robust with small bias and standard error 

(WMO, 1989). While this is true, one of the first steps towards obtaining a coherent 

analysis is the detection of outliers in the observations. Detected outliers are 

candidates for aberrant data that may otherwise adversely lead to model 

misspecification, biased parameters estimation and incorrect results (Ben-Gal, 2004). 

Incorrect data values either during recording and/ measuring and the circumstances 

under which the data so collected may have changed over time (Hosking and Wallis, 

1997) and as such these cast doubt on estimation of the probability distribution. 
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Similar studies by Hosking and Wallis (1997) illustrated that the measurement error 

tends to inflate the coefficient of variation and coefficient of skewness of the observed 

data and may be expected to lead to overestimation of the upper-tail quantiles of the 

frequency distribution. Even though the data may be reliable, it is still important to 

check for errors or outliers prior to modelling and analysis (Hosking & Wallis, 1997; 

Meshgi & Khalili, 2007b; Gheidari, 2013; Shabri, 2002; Walfish, 2006; and Ben-Gal, 

2004). Potter and Walker (1981) studies have shown that the effect of modelling error 

because of the measurement error is far more damaging than the sampling error. 

While this is understood, a study by WMO (1989) has shown that outliers have only a 

small effect if an efficient method of parameter estimation is used - say L-moments 

and LH-moments. 

In view of the above, the extreme value nature and the need for frequency analysis of 

annual flood peaks have over the years motivated researchers to explore the merits of 

a number of probability distribution functions. The parameters of probability 

distribution functions can be estimated by various methods. The oldest and widely 

understood technique for fitting frequency distributions to observed data are method 

of moments (MOM) or product moments, and the method of maximum likelihood 

(ML) (Vogel and Fennesey, 1993). Through conducting experiments based on daily 

streamflow, they found that both skewness and coefficient of variation exhibit 

remarkable bias for highly skewed populations, and hence the product moments were 

found to be of little value for discriminating among potential candidate distributions. 

For many distributions, the inverse functions of their distribution functions using 

MOM and ML cannot be explicitly derived (Greenwood et al, 1979). They also 

presented that ML estimates of the parameter values are not easily obtained. However, 

because of the generally small sample sizes available for characterizing hydrologic 

time series in the Limpopo catchment, estimates of the third and higher product 

moments are usually very uncertain. Greenwood et al. (1979) presented the 

probability weighted moments (PWMs) as an alternative to the more conventional 

methods of the aforementioned techniques and Hosking et al. (1985) showed that the 

PWM method is superior to the ML method when the GEV distribution is used for 

longer return periods, that is, return period of more than 100 years. Greenwood et al. 

(1979) found that many distributions may be explicitly defined as both the distribution 
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function and their inverse functions using PWMs. They showed that all higher-order 

PWMs are simply linear combinations of the order statistics; and thus they declared 

that the relations between the PWMs and the distributions’ parameters are of simpler 

analytical structure than those between the conventional moments and parameters.  

Researchers further worked on the development of procedures for utilization of the 

linear combinations of the PWMs and, identified as the linear moments. Hosking 

(1990) thus introduced L-moments as a linear combination of PWMs and he used L-

moment ratio diagram to identify the underlying parent distributions and the L-

moment ratios for testing goodness-of-fit of different distributions. Since sample 

estimators of L-moments are always linear combinations of the ranked observations 

(Vogel and Fennesey (1993)), they are subject to less bias than ordinary product 

moment estimators. The variance and skewness (Equations (17) and (18), 

respectively) require squaring and cubing the observations in the conventional 

moments, which causes them to give greater weight to the observations far from the 

mean, resulting in substantial bias and variance. Hosking and Wallis (1997) 

investigated that L-moments have the theoretical advantages over conventional 

moments of being able to characterize a wider range of distributions and when 

estimated from a sample, of being more robust to the presence of outliers in the data. 

Wang (1997) on the other hand introduced the LH-moments as a generalization or 

modified form of the L-moments, which is intended to improve parameter estimation 

when higher level of the liner moments are utilized. Statistical analysis of extremes is 

often conducted for predicting large return period events. Thus more relevant to the 

analysis are the upper part of distributions and more extreme sample events. Wang 

(1997) in his work thus compared the L-moments and LH-moments that distribution 

curves fitted by using L-moments are influenced too much by small annual maximum 

flows, leading to poor prediction of large return period events; and in contrast he 

found that the curves fitted by the LH-moments better capture the trends shown by the 

larger flows and thus the LH-moments estimates of large return period events are less 

influenced by the small annual maximum flows. These findings were further 

investigated and supported by different researchers (Gheidari, 2013, Bhuyan et al, 

2009; Lee & Maeng, 2003; Meshgi & Khalili, 2009). 
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The letter ‘H’ in LH-moments denotes higher order L-moments, the L1-, L2-, L3- and 

L4-moments denote the first, second, third and fourth higher order LH-moments, 

respectively. The zero-order LH-moments or L- is equivalent to simple L-moments. 

Development of the LH-moments by Wang (1997) was extended to four levels (L1 to 

L4), with the L-moments (L) considered as the special case. He concentrated only on 

the GEV distribution while Meshgi and Khalili (2007a, 2007b) developed the LH-

moments for the generalised Pareto (GPA) and generalised logistic (GLO) 

distributions in the RFFA of Karkhe watershed, located in western Iran. Gheidari 

(2013), Bhuyan et al (2009), Lee and Maeng (2003) did their work using RFFA based 

on GPA, GLO and GEV distributions and presented that the results by LH-moments 

are more efficient and robust for obtaining improved values of flood peaks than the L-

moments. Unlike the LH-moments, the L-moment was developed for many 

distributions. Accordingly, the L-moment method is also a robust method of 

frequency distribution parameter estimations and has been widely used for many 

hydrological processes. With the above research findings and while the theory of LH-

moments is relatively new and is not widely used for RFFA for estimation of design 

floods at desired recurrence intervals, the methods of the L-moments and LH-

moments will be used for regional flood frequency analysis of the Limpopo catchment 

and a comparative study will be made between these two newer methods. 

2.4.2 Conventional Methods of Parameter Estimation 

Product Moments of Distribution  (MOM)–these are also called theoretical moments 

- A common approach to describing a distribution’s centre, spread and shape is by 

reporting the moments of a distribution. From a set of observations (X1, ..., Xn), the 

distribution’s centre, spread and shape of the moments of a distribution can be 

estimated. Accordingly, the statistical estimators of the first moment about the origin 

(the mean of X) (Chow et al., 1988), the second moment (the variance), and the square 

root of the variance (the standard deviation) are given by equations (10), (11) and 

(12), respectively. 

.
 = /[0] = 1 ��
(�)2�34'4                    (10) 
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5
6 = 78�(0) = /[(0 − .
)6]                  (11) 

5
 = √78�                     (12) 

While the mean µX is a measure of the central value of X and also known as the 

location parameter, the standard deviation σX is a measure of the spread of the 

distribution of X about μX. 

Another measure of the variability in X is the coefficient of variation given by: 

:;
 = <�=�                     (13) 

The coefficient of variation expresses the standard deviation as a proportion of the 

mean. It is useful for comparing the relative variability of the flow in rivers of 

different sizes, or of rainfall variability in different regions when the random variable 

is strictly positive. 

The third moment about the mean, denoted λX, measures the asymmetry, or skewness, 

of the distribution and is given by: 

>
 = /[(0 − .
)?]                    (14) 

Typically, the dimensionless coefficient of skewness γX is reported rather than the 

third moment λX. The coefficient of skewness -a measure of asymmetry- is the third 

moment rescaled by the cube of the standard deviation so as to be dimensionless and 

hence unaffected by the scale of the random variable: 

@
 = A�<�B = C[(
'=�)B]<�B                      (15) 

The coefficient of kurtosis which describes the thickness or peakedness of a 

distribution’s tails is given by: 

D
 = C[(
'=�)E]<�E                     (16) 

Sample Estimators – it is also called sample moments -  When the distribution of a 

random variable is not known, but a set of observations {x1, … , xn} is available, the 
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moments of the unknown distribution of X can be estimated based on the sample 

values using the following equations: 

The sample estimate of the mean: 

.̂
 = 0G = �, ∑ 0I,IJ�                    (17) 

The sample estimate of the variance: 

5K
6 = L
6 = �(,'�) ∑ (0I − 0G)6,IJ�                   (18) 

The sample estimate of skewness: 

>M
 = ,(,'�)(,'6) ∑ (0I − 0G)?,IJ�                   (19) 

The sample estimate of the coefficient of variation: 

:MNO = PO
G                      (20) 

The sample estimate of the coefficient of skewness: 

@K
 = Q = AR�POB = ,(,'�)(,'6)P�B ∑ (0I − 0G)?,IJ�                  (21) 

All of these sample estimators provide only estimates of actual or true values. Unless 

the sample size n is very large, the difference between the estimators and the true 

values of μX, σ
2

X, λX, CvX, and γX may be large. 

The sample estimate of kurtosis: 

DM
 = S ,TU(,'�)(,'6)(,'?)VW (0I − 0G)X       (22) 

The sample estimate of the coefficient of kurtosis: 

:Y = Z[�P�E = \ ,TU(,'�)(,'6)(,'?)VP�E ] ∑(0I − 0G)X      (23) 

Using these moments, the parameters of a distribution can be determined. 

Hydrologists often favour this method for its simplicity. However, moments of higher 
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order than these four are not commonly used in the statistical analysis of hydrologic 

data because most hydrologic data do not have sufficiently long length of record and 

thus cannot warrant reliable estimates of the moments of higher order (Chow, 1964). 

This is because as the exponent of the standard deviation increases, the error increases 

by the same exponent. 

Probability Weighted Moments (PWMs) -  This method which was introduced by 

Greenwood et al. (1979) involves moment estimation from the linear weighted 

combination of the ordered statics and use them for the estimation of parameters 

(Dingman, 2002). The statistics are: 

 

D^ = �, ∑ �I,IJ�                     (24) 

which is equivalent to the mean. 

D� = �, ∑ �I (I'�)(,'�),IJ�                    (25) 

 

D6 = �, ∑ �I (I'�)(I'6)(,'�)(,'6),IJ�                   (26) 

and in general, 

D_ = �, ∑ (I'�)(I'6)(I'?)…(I'_)(,'�)(,'6)(,'?)…(,'_),IJ� 0_                   (27) 

where, D_ = PWM of order r, such that r = 1, 2, ...; n = sample size and i = rank of the 

ordered data (Xi) in the ascending order.  

This method is useful for distributions with explicitly defined inverse form, that is, 

  If F(x) exists, then x(F) also exists. 

It also works well for situations where records are extremely short and stream flow 

samples are highly skewed and highly kurtotic. This situation often arises when the 

sample size at each site is small (Kumar and Chander, 1987).  
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2.4.3 Newer Methods of Parameter Estimation 

A statistical distribution can be misled or distorted due to the short record, presence of 

outliers, data gaps and measurement errors. However, researchers like Hosking and 

Wallis (1997), Parida (1999), Meshgi and Khalili (2007a), Bhuyan et al. (2009), 

Gheidari (2013), Lee and Maeng (2003) and Murshed et al. (2013) have shown that 

the use of the L- and LH-moments can overcome the above problems to a great 

extent, while being able to identify a suitable distribution and also producing unbiased 

estimates due to use of linear moments of ordered statistics. L-and LH-moments are 

currently being used widely for parameter and quantile estimations. These two 

methods including their relative advantages are also discussed in brief in the 

subsequent sections. 

2.4.3.1 L-Moments 

In many hydrologic applications, sample estimators of L-moments (L) are linear 

combinations of the ranked observations, and thus do not involve squaring or cubing 

the observations as do the product-moment estimators. As a result, L-moment 

estimators of the dimensionless coefficients of variation and skewness are almost 

unbiased and have very nearly a normal distribution. On the other hand, the product-

moments estimators of the coefficient of variation and of skewness are both highly 

biased and highly variable in small samples (Maidment, 1993). For further discussion 

about these issues, refer Hosking and Wallis (1997). 

The following are specific advantages of L-moments approach over ordinary product 

moments (Zafirakou-Koulouris et al., 1998): 

1. L-moment ratio estimators of location, scale, and shape are nearly unbiased, 

regardless of the probability distribution from which the observations arise 

(Hosking, 1990); 

2. L-moment ratio estimators such as L-CV, L-skewness, and L-kurtosis can exhibit 

lower bias than conventional product moment ratios, especially for highly skewed 

samples; 
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3. The L-moment ratio estimators of L-CV and L-skewness do not have bounds, 

which depend on sample size as do the ordinary product moment ratio estimators 

of CV and skewness; 

4. L-moment estimators are linear combinations of the observations and thus are less 

sensitive to the largest observations in a sample than product moment estimators, 

which square or cube the observations; 

5. L-moment ratio diagrams are particularly good at identifying the distributional 

properties of highly skewed data, whereas ordinary product moment diagrams are 

almost useless for this task (Vogel and Fennessey, 1993). 

6. L-moment provides better flood estimates for low return periods. 

In this method, no apriori choice of distribution is made and is prompted by the use of 

L-Skewness (a?) and L-Kurtosis (aX) diagram based on the location of the plot of L-

Skewness and L-Kurtosis value using the observed data.  

However, when L-moment is compared with LH-moments, the specific disadvantage 

of this method is that distribution curves fitted by L-moments are influenced too much 

by small maximum data leading poor prediction of large return period events. In other 

words, L-moments are oversensitive to the lower part of distributions and give 

insufficient weight to large sample values that actually contain useful information on 

the upper distribution. 

Computed values of a? 8b2 aX are then plotted on to the theoretical L-moment ratio 

diagram which suggests the likely/possible statistical distribution which could be used 

for analysis. 

2.4.3.2 LH-Moments 

LH-moments (L1 to L4), a generalization of L-moments, are introduced by Wang 

(1997) for characterizing the upper part of distributions and larger events in data. 

Being newer method of parameter estimating technique, LH-moments are more useful 

than L-moments for characterizing distributions, for interpreting data, and for regional 

analysis, just like L-moments are more useful and easier to interpret than PWMs. 

However, LH-moment has been developed for only three common distributions viz: 

GLO, GEV and GPA distributions.  
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While conventional moments fail to converge to a solution due to their mathematical 

complexity, LH-moments overcome some of these difficulties. Therefore, LH-

moments are found unbiased and robust for characterizing the data and estimation of 

the parameters and quantiles. LH-moments thus have gained popularity in recent 

years; and therefore, regional flood frequency analysis is also applied by the LH-

moments method again for the Limpopo Basin. The same procedure of the L-

moments has been followed to construct the LH-moments ratio diagram to suggest the 

possible statistical distribution. 

There are a number of specific advantages of LH-moments approach, in RFFA 

literature including: Wang, 1997; Meshgi and Khalili (2007a); Bhuyan et al. (2009); 

Gheidari (2013); Lee and Maeng (2003); and Murshed et al. (2013); some of which 

are: 

1. Unlike L-moment, the method of LH-moment reduces undesirable influences that 

small sample events may have on the estimation of large return period events. 

2. LH-moment diminishes the influence of small sample values as � increases. 

3. LH-moment overcomes complex mathematical solution. 

4. LH-moment fits the distribution well. 

5. LH-moment increases efficiency for higher quantile estimations yet with less bias. 

6. LH-moment is useful in avoiding undue influence that more frequent observations 

have on less frequent observations. 

7. LH-moment provides improved values of flood peaks for higher return periods. 

However, when LH-moment is compared with L-moments, the following are specific 

disadvantages of this method: 

1. There is limited use of LH-moments in flood frequency analysis due to the 

difficulty of formation of homogeneous region and development of LH-moments 

for other commonly used distributions. 

2. LH-moment is less efficient than L-moments for shorter return periods. 

Computed values of a? 8b2 aX are then plotted on to the theoretical L-moment ratio 

diagram which suggests the likely/possible statistical distribution which could be used 

for analysis. 
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CHAPTER 3 

3 METHODOLOGY 

3.1 General 

The method of L-moments introduced by Hosking (1990) has the advantage over the 

previous conventional methods in providing parameter estimates that are nearly 

unbiased and highly efficient and thus are better suited for use in constructing 

moment diagrams. Wang (1997) introduced LH-moments, which are modified forms 

of the L-moments, to characterize the upper part of a distribution. Though LH-

moments are advocated by some researchers as a better parameter and quantile 

estimations method over the L-moments, the methodology of the two procedures are 

described in the subsequent sections to compare their performance using the Limpopo 

real flood data. 

3.2 L-Moments 

Hosking (1990) introduced L-moments as a linear combination of PWMs. The 

PWMs, defined by Greenwood et al. (1979) for a non-negative integer may be given 

as: 

D_ = /[�U�(�)V_]                    (28) 

which can be written as: 

D_ = 1 ��̂ (�)�_2�, � = 0, 1, 2, …                  (29) 

where, F = F(x) is the cumulative distribution function (CDF) for x, x(F) is the 

inverse CDF of x evaluated at the probability F. When r = 0, D^is equal to the mean 

of the distribution . = /[�]. 
Hosking (1990) defined r

th
 L-moments related to the r

th
 PWMs as: 

>�+1 = ∑ Df(−1)�−fg�fhg�+ff h�$=0                   (30) 
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Using the ranked data (in the ascending order), an unbiased estimate of sample 

Probability Weighted Moments can be computed from the following equation: 

D_ = �, ∑ (I'�)(I'6)(I'?)…(I'_)(,'�)(,'6)(,'?)…(,'_),IJ� 0_                  (31) 

where, D_ = PWM of order r, such that r = 1, 2, n= sample size and i = rank of the 

ordered data (Xi) in the ascending order.    

Since the L-moments are related to PWMs, the first four L-moments can be calculated 

from: 

>� = D^         

>6 = 2D� − D^          

>? = 6D6 − 6D� + D^         

 >X = 20D? − 30D6 + 12D� − D^                                       (32) 

These four moments are analogous to the first four conventional moments of 0, such 

that the L-coefficient of variance, � − :N(a6); L-skewness � − :k (a?); and L-

kurtosis, � − :l (aX) can be written as: 

a6 = ATAm                    (33) 

a? = ABAT                          (34) 

aX = AEAT                           (35) 

Computed values of a? 8b2 aX are then plotted on to the Theoretical L-Moment ratio 

diagram (shown as +) which suggests the likely/possible statistical distribution which 

could be used for analysis. The theoretical L-moment ration diagram for five 

commonly used distributions of three parameters is presented in Figure 3.1. 



Figure 3.1: Theoretical plots of L

distributions (viz: Generalised Pareto (GPA), G

(GEV), Generalised Logistic (GLO), 3

Type 3 (PE3) Distribution) (Hosking and Wallis, 1997)

 

3.3 LH-Moments 

Wang (1997) introduced LH

fundamental concepts of the LH

varying only in the corresponding coefficients used as multiplication terms (Meshgi 

and Khalili, 2007a). The first four LH

given below: 

>�̂ = (0�3�:�3�)  

>6� = �6 /g0�36:�36 − 0�3�:�3
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Theoretical plots of L-skew versus L-kurtosis diagram for 

distributions (viz: Generalised Pareto (GPA), Generalised Extreme Values 

(GEV), Generalised Logistic (GLO), 3 Parameter Log-normal (LN3), Pearson 

Type 3 (PE3) Distribution) (Hosking and Wallis, 1997) 

Wang (1997) introduced LH-moments as a linear combination of higher PWMs. The 

oncepts of the LH-moments are essentially the same as the L-

varying only in the corresponding coefficients used as multiplication terms (Meshgi 

and Khalili, 2007a). The first four LH-moments as defined by Wang (1997) are then 
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3), Pearson 

moments as a linear combination of higher PWMs. The 
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varying only in the corresponding coefficients used as multiplication terms (Meshgi 

moments as defined by Wang (1997) are then 
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>?� = �? /g0�3?:�3? − 20�36:�3? + 0�3�:�3?h      

>X� = �X /g0�3X:�3X−0�3?:�3X − 30�36:�3X + 0�3�:�3Xh           (36) 

Wang (1997) defined the sample LH-moments as follows: 

>�� = D�           

>6� = �6 (� + 2)[D�3� − D�]         

>?� = �?! (� + 3)[(� + 4)D�36 − 2(� + 3)D�3� + (� + 2)D�] 

>X� = 14! (� + 4)[(� + 6)(� + 5)D�3? − 3(� + 5)(� + 4)D�36 

+3(� + 4)(� + 3)D�3� − (� + 3)(� + 2)D�]               (37) 

where D_ is the rth root sample PWM for r=1, 2, ... and �=0, 1, 2, ..., which was 

defined by Greenwood et al. (1979) as: 

D_ = �, ∑ (I'�)(I'6)(I'?)…(I'_)(,'�)(,'6)(,'?)…(,'_),IJ� 0I:,                (38) 

in which, 

D_ = 1 �(�)�r��ms 1 �r��ms = (� + 1) 1 �(�)�t2� = (� + 1)D_�̂
              (39) 

The LH-moment ratios LH-coefficient of variation(�u − :N, a6�), LH-coefficient of 

skewness (�u − :k, a?�) and LH-coefficient of kurtosis (�u − :Y , aX�) are defined as:  

a6� = >6� >��)                     (40) 

a?� = >?� >6�)                     (41) 

>X� = >X� >6�)                     (42) 
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As � increases, LH-moments reflect more and more the characteristics of the upper 

part of distributions and larger events in data. 

As discussed in Chapter 1, the LH-moments were investigated and developed only for 

the three distributions of the GEV, GLO and GPA (Gheidari, 2013). Accordingly, 

details of the parameter and quantile estimations for these three distributions are 

provided in Section 3.4. Accordingly, the L- and LH-moments diagrams will be 

generated for the commonly used three parameter distributions of the GPA, GEV, 

GLO distributions to select the robust distribution model for parameter and quantile 

estimations. 

3.4 Parameters Estimation 

As indicated in Section 2.4, the LH-moments method was developed only for the 

GEV, GLO and GPA distributions. The regional average LH-moment ratios a�,6v  and 

a�,?v  together with >M��, for ��,�=0, 1, 2, 3, 4, that is, (L to L4) will be used for estimates 

of the parameters of the above distributions as proposed by Hosking and Wallis 

(1997) for L-moments and Bhuyan et al (2009) for LH-moments. Accordingly, the 

regional average LH-moment ratios a6,�v  and a?,�v  together with >M��=1, for � =
0,1,2,3,4 … will be used for estimates of the parameters of GEV, GLO and GPA 

distributions. 

Let X be a real-valued ordered random variable of size n, such that 0�:, ≤ 06:, ≤⋯ ≤ 0,:,with cumulative distribution function F(x) and quantile function x(F), then 

the L-moments (Hosking, 1990) and LH-moments of X (Wang, 1997) can be defined 

in the following sections. 

3.4.1 LH- and L-moments for the GEV distribution 

The probability density function of the GEV is given by: 

�(�) = y'�&'(�'l)z'{|} , ~ = �−f'��b �1 − l(�'�)� � ,   $ ≠ 0
�'�� ,   f = 0 �             (43) 

The cumulative distribution function of the GEV can be written as: 
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�(�) = &'{|}
                    (44) 

�(�) = &�� �− S1 − l� (� − �)Wm��, if f ≠ 0                           (45) 

 = &�� �−&�� S�� (� − �)W�, if f = 0                           (46) 

The inverse of the CDF will give the quantile function of the GEV distribution for the 

required return periods and is given by: 

�(�) = �(�) = � + �l U1 − [−�b�]lV, f ≠ 0                (47) 

 = � − y �b(−�b�), f = 0                 (48) 

where � is a location parameter, y is a scale parameter and f is a shape parameter 

In Equation (47), −∞ < 0 ≤ � + y f⁄  for f > 0 and � + y f ≤ 0 < +∞⁄  for f < 0. 

3.4.1.1 L-Moments 

Hosking and Wallis (1997) estimated the parameters of the GEV distribution for the 

case of L-moments as: 

� = 6?3�B − �,6�,?  (49) 

f̂ ≈ 7.8590� + 2.9554�6 (50) 

yK = l�AT�(�3l�)(�'6|��) (51) 

�M = >� − ��l� [1 − Γ(1 + f̂)] (52) 

where Γ(. ) is a Gamma function 

3.4.1.2 LH-Moments 

Equations (53) – (56) were developed by Lee and Maeng (2003) for the parameters of 

the GEV distribution at different LH-moments levels as: 
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� = (�36)Z��m'(�3�)Z�(�3?)Z��T'(�3�)Z� − ��(�36)'�� (�3�)��(�3?)'�� (�3�) (53) 

f̂ = 8�� + 86�6 (54) 

Table3.1 gives the coefficient values of Equation (54) for different LH-moments 

levels. 

Table 3.1: Corresponding Coefficients of Equation (54) for different levels (�) of the 

LH-moment (Lee and Maeng 2003) 

H a1 a2 

0 7.8589 2.9534 

1 11.9082 2.7787 

2 15.9316 2.7301 

3 19.9455 2.7072 

4 23.9546 2.6936 

 

yK = l�[(�36)Z��m'(�3�)Z�]�(�3l�)[(�3�)|��'(�36)|��] (55) 

�M = (� + 1)D� − ��l� [1 − (� + 1)'l�Γ(1 + f̂)] (56) 

3.4.2 LH- and L-moments for the GLO distribution 

The probability density function of the GLO is given by: 

�(�) = �|m{|(m|�)}|�|}
(�3{|})T , ~ = �−f'��b �1 − l(�'�)� � ,   $ ≠ 0

�'�� ,   f = 0 �   (57) 

The cumulative distribution function of the GLO as provided by Hosking and Wallis 

(1997) can be written as: 

�(�) = 1 (1 + &'z))          (58) 

Equation (58) was rewritten by Shabri (2012) as: 
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�(�) = �1 +  1 + �1 − l� (� − �)�m�¡¢
'�

, if f ≠ 0     (59) 

The inverse of the CDF will give the quantile function of the GLO distribution for the 

required return periods and is given by Hosking and Wallis (1997) as: 

�(�) = � + �l �1 − S�'�� Wl� , f ≠ 0                 (60) 

 = � − y �bU(1 − �)/�V, f = 0                (61) 

3.4.2.1 L-Moments 

The parameters of the GLO distribution were given using L-moments by Hosking 

(1990) as: 

f̂ = − ABAT                    (62) 

yK = AT�(�3l�)�(�'l�)                   (63) 

�M = >� + AT'��l�                                (64) 

3.4.2.2 LH-Moments 

Meshgi and Khalili (2007b) used the LH-moments method in different levels (�) to 

estimate the parameters of the GLO distribution. In their work, f, � and y values were 

estimated by Equations (65)-(67) for different levels of the LH-moments: 

f̂ = (�3?)(�36)Z��T'[g�36)T3(�36)(�3�)¤Z��m3(�3�)TZ�(�36)Z��m'(�3�)Z�                (65) 

yK = �(�36)[(�36)Z��m'(�3�)]Z��(�3�'l�)�(�3l�)                              (66) 

�M = (� + 1)D� − ��l� S1 − �(�3�'l�)�(�3l�)�(�3�) W                (67) 
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3.4.3 LH- and L-moments for the GPA distribution 

The probability density function of the GPA is given by: 

�(�) = y'�&'(�'l)z, ~ = �−f'��b �1 − l(�'�)� � ,   $ ≠ 0
�'�� ,   f = 0 �    (68) 

The cumulative distribution function of the GPA as provided by Hosking and Wallis 

(1997) can be written as: 

�(�) = 1 − &'z                            (69) 

Equation (69) is rewritten and given by Maidment (1993) as: 

�(�) = 1 − S1 − f %�'�� *Wm�
, for > 0       (70) 

The inverse of the CDF will give the quantile function of the GPA distribution for the 

required return periods and is given by Hosking and Wallis (1997) as: 

�(�) = � + �l U1 − [1 − �]lV, f ≠ 0       (71) 

 

        = � − y ln (1 − �), f = 0       (72) 

 

3.4.3.1 L-Moments 

The parameters of this distribution for the case of L-moments were estimated by 

Hosking (1990) as: 

f̂ = X�KB'?                    (73) 

yK = >6[(f̂ + 1)(f̂ + 2)]                  (74) 

�M = >� + >6(f̂ + 2)                   (75) 
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3.4.3.2 LH-Moments 

Meshgi and Khalili (2007b) estimated the parameters of the GPA distribution using 

LH-moments for different levels by Equations (76)-(78): 

f̂ = '§'6�3((�3?)¨(�3?)Z��T'(�3�)Z�¤)/((�36)Z��m'(�3�)Z�)'�3((�3?)Z��T'(�3�)Z�)/((�36)Z��m'(�3�)Z�)               (76) 

yK = l��(�3?3l�)�(�363l�)[(�36)Z��m'(�3�)Z�](�3�)!�(�3l�)[(�36)�(�363l�)'�(�3?3l�)]                 (77) 

�M = (� + 1)D� − ��l� S1 − (�3�)�(�3�)�(�3l�)�(�363l�) W                (78) 

3.5 Steps Used for Regional Flood Frequency Analysis 

The procedure suggested by Hosking and Wallis (1997) precisely involves evaluation 

of three statistical measures using L-moments, which can also be used for LH-

moments, which are: 

(i) Discordancy measure (Di), 

(ii) Heterogeneity measure (H), and  

(iii)Goodness-of-fit measure (Z). 

3.5.1 Discordancy Measure 

Hosking and Wallis (1997) proposed a discordancy measure (Di) based on L-moments 

to recognize those sites that are grossly discordant with the group as a whole. The 

same discordancy measure is used for different LH-moments, �� , � = 1, 2, 3, 4, that 

is, from L1 to L4 with the required modification of the components of ui vector in the 

proposed formula of Hosking and Wallis (1997). The discordancy measure is used to 

assist in identifying those sites whose LH-moment (L to L4) ratios are discordant 

(markedly different) relative to LH-moment (L to L4) ratios for the collection of sites.  

It is important to note that low or high outliers should not be removed from the 

datasets as these are expected outcome in large samples from multiple sites. The 

“apparent” outliers are important indicators about the natural variability of the 

phenomenon and the frequency of occurrence of low or high values. It is therefore 
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suggested that if no obvious cause of discordant measure, the site(s) shall be kept with 

the proposed group of sites and delay decision until heterogeneity measure (H) is 

computed during regional analysis 

(http://www.mgsengr.com/LRAP/Download/LMoments.pdf). In conducting the 

RFFA, the heterogeneity measure is the primary indicator for accepting or rejecting a 

proposed region (group of sites). The discordancy measures for the various sites 

provide a secondary indicator to consider whether a discordant site should be removed 

to another region. 

The discordancy measure is defined as: 

©I� = �? (ªI − ªG)�L'�(ªI − ªG),                 (79) 

Where ªI = vector of LH-Cv, LH-Cs and LH-Ck for site i; 

S = covariance matrix of ui; 

ªG = mean of vector ªI. 
A given site is declared discordant if Di ˃ 3.0. 

3.5.2 Regional Homogeneity (Heterogeneity Measure) 

In RFFA, identification of homogeneous regions within the study area is the first step 

of the analysis. The procedure proposed by Hosking and Wallis (1997) for L-

moments (L) with extension of all higher order LH-moments groups (L1 to L4) have 

been used for test of regional homogeneity. The homogeneity measure basically 

compares the between-site variation in sample LH-moments (L to L4) for the group of 

sites with what would be expected for a homogeneous region. For this purpose, the 

LH-moments (L to L4) and the parameters of Kappa distribution developed by Meshgi 

and Khalili (2007a) will be used for 500 simulations in each of the LH-moments �� , � = 0, 1, 2, 3, 4 that is from L to L4. 

Suppose a proposed region has N sites, with site i having record length ni and sample 

LH-moment ratios a6I , a?I , 8b2 aXI . Let a6v , a?v , 8b2 aXv be the regional averages of LH-
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Cv, LH-skewness and LH-kurtosis; then the weighted proportionally to the sites’ 

record length are given by: 

a�,6v = ∑ ,«�T,«¬«­m∑ ,«¬«­m   (80) 

a�,?v = ∑ ,«�B,«¬«­m∑ ,«¬«­m   (81) 

a�,Xv = ∑ ,«�E,«¬«­m∑ ,«¬«­m   (82) 

The weighted standard deviation of the at-site sample LH-CVs, LH-skewness and 

LH-kurtosis are given as: 

7�,� = �∑ ,«%�T,«'�T®*T¬«­m ∑ ,«¬«­m �
mT
 (83) 

7�,6 = �∑ ,«%�T,«'�T®*T3%�B,«'�B®*T¬«­m ∑ ,«¬«­m �
mT
 (84) 

7�,6 = �∑ ,«%�B,«'�B®*T3%�BE,« '�E®*T¬«­m ∑ ,«¬«­m �
mT
  (85) 

For the simulation purpose, an L-MOMENTS program written in FORTRAN version 

3.0-1 written and revised by Hosking (2015) will be basically used to determine the 

statistical characteristics of homogeneous regions with the same number of stations 

and the same record lengths as those in the analysis. The program generates a 

homogeneous region with total number of observations equal to the sum of 

observations in the stations being analyzed. These will be divided such that each 

station of the simulated region will have the same number of observations as 

corresponding stations in the analysis. 

Heterogeneity measure, H1, is an important parameter used for identification of 

homogeneous region based on observed and simulated dispersion of LH-moments 

(LH-Cv) for a group of sites under consideration. This can be computed from 

Equation (86) as: 
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u�� = m̄'=°m<°T   (86) 

u6� = T̄'=°T<°T   (87) 

u?� = B̄'=°B<°B   (88) 

where, V=weighted standard deviation of a6 values, 

.¯ , 5¯ = the mean and standard deviation of Nsim values of V, and 

Nsim = no. of simulations 

A region is declared as “acceptably homogeneous” if Hi ˂ 1, “possibly 

heterogeneous” if 1 ≤ Hi ≤ 2, and “definitely heterogeneous” if Hi ˃ 2. To avoid 

committing to a particular two or three-parameter distribution, simulation will be 

undertaken using a four-parameter Kappa distribution (Hosking and Wallis, 1997 for 

L-moments; and Meshgi and Khalili, 2007a for LH-moments) and the number of 

simulation is kept at least at 500 to arrive at reliable estimates of .¯ and 5¯. 

In addition to the above, two additional measures viz: H2 and H3 based on LH-Cv/LH-

Ck and LH-Cs/LH-Ck (L to L4) distances respectively are also considered. The 

measure H2 indicates whether at-site and regional estimates will be close to each 

other, while H3 indicates whether the at-site and regional estimates will be in 

agreement. A large value of H2 usually indicates a large deviation between regional 

and at-site estimates, whereas a large value of H3 indicates a large deviation between 

at-site estimates and observed data. In practice, the H measure for the observed 

variability in LH-Cv (L to L4) has been found to be very useful measure. Conversely 

the high level of natural variability in sample values of LH-skewness and LH-kurtosis 

(L to L4) result in the H2 and H3 measures having low discriminatory power. 

Therefore, the heterogeneity measure H1 for the level of variability in at-site values of 

LH-Cv (L to L4) becomes the de-facto measure for assessing the relative level of 

heterogeneity for the proposed region 

(http://www.mgsengr.com/LRAP/Download/LMoments.pdf). 
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Nevertheless, a small amount of heterogeneity does not negate the advantage of 

regional flood frequency analysis (Cunnane, 1988). Similarly, previous studies by 

Lettenmaier and Potter (1985), Lettenmaier et al. (1987), Hosking and Wallis (1988) 

and Potter and Lettenmaier (1987) suggested that even though a region may be 

moderately heterogeneous, regional analysis will still yield more accurate quantile 

estimates than at-site analysis. 

3.5.3 Goodness-Of-Fit Measure 

(i) LH-Moments Ratio Diagram (L to L4) 

The L-moments (L) ratio diagram proposed by Hosking and Wallis (1997) is extended to each 

LH-moments �� , � = 1, 2, 3, 4 that is (L1 to L4) and used to select a best fitting 

probability distribution for the region. In LH-moments ratio diagram, the theoretical 

curves of the three parameter distributions mentioned in Section 2.5 for each level of 

LH-moments as well as the regional average LH-skewness and LH-kurtosis will be 

plotted on the same graphs for selecting the best fit distribution. The method of 

generating the L-skewness versus L-kurtosis curve by plotting polynomial 

approximations (Hosking and Wallis, 1997, pp. 207-208) is extended to generating 

the LH-moments curve. Nonetheless, one or more candidates might qualify for the 

proposed distribution and therefore it is difficult to select the best fitting for the region 

on the basis of LH-moments ratio diagram only. Hence, the Z-statistic criteria 

depicted below will be considered for selecting the best fitting distribution. 

(ii) Z-Statistic Criteria 

Z-statistics criteria for L-moments proposed by Hosking and Wallis (1997) and LH-

moments, �� , � = 1, 2, 3, 4 that is from L1 to L4 proposed by Meshgi and Khalili 

(2007a) are used to select the best fitting distribution among the distribution 

candidates. For this purpose, as indicated earlier, the LH-moments (L to L4) of the 

kappa function will be developed. This measure, Z, judges how well the LH-skewness 

and LH-kurtosis (L to L4) of the fitted distribution (simulated) matches the regional 

average LH-skewness and LH-kurtosis (L to L4) of the observed data. Z for the 

chosen distribution Z
DIST

 is defined by: 
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±�²³P� = �É µ¶·'�E®3ZE<E                    (89) 

where, aXv= regional average LH-kurtosis value computed from the data of a given 

region, 

 DX = bias of aXv, 

 aX²³P� = average LH-kurtosis value computed from simulation for a fitted 

distribution, 

 5X = standard deviation of LH-kurtosis value (from simulation). 

The bias of aXv is given by: 

D�,X = �¸¹«º ∑ (aX» − aXv)¸¹«º»J�                   (90) 

The standard deviation of yX is given by: 

5X = ¨(¼kI» − 1)'�½∑ (aX» − aXv)6 − ¼kI»DX6¸¹«º»J� ¾¤�/6
              (91) 

where, aX» = regional average LH-kurtosis value computed from simulation. 

The values of ¿±�²³P�¿-statistics for the candidate distributions based on L, L1, L2, L3 

and L4-moments can be calculated; and hence, a given distribution is declared a good 

fit if ¿±�²³P�¿ ≤ 1.64. While a number of distributions may qualify for the goodness-

of-fit measure criteria, the most potential will be the one that has the minimum 

¿±�²³P�¿ value. 

3.5.4 Flood Quantile Estimates for the Region 

The index-flood procedure proposed by Dalrymple (1960) will be used for quantile 

estimates in this study of RFFA approach. 

Index-Flood Procedure 

The key assumption of an index-flood procedure is that the sites form a homogeneous 

region, that is, that the frequency distributions of the N sites are identical apart from a 
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site-specific scaling factor, the index flood (Hosking and Wallis, 1997). In other 

words, when the distribution functions are scaled with their respective index-flood, 

the resulting dimensionless of all sites in the region can be assumed to have the same 

shape, which is independent of drainage area and of any other site characteristics 

(Brutsaert, 2005). According to Hosking and Wallis (1997), frequency distributions at 

different sites are identical apart from a scale factor, the index-flood. Accordingly, this 

method comprises of two components: 

(1) A regional flood frequency curve 

The index-flood procedure proposed by Dalrymple (1960) will be used for quantile 

estimates ÀÁI(�) at site i, which is given as: 

 ÀÁI(�) = >M�,I� �K�(�), � = 0, 1, 2, 3, 4, … (92) 

where, >M�,I�
 is the index-flood for site i and �K�(�) is the regional quantile estimates or 

regional growth curve common to every site.  

To derive this curve, first the flood distribution curve of each stream flow gauging site 

in the region is made dimensionless, that is normalized, by dividing the flow rates by 

the index-flood of the site. The regional flood frequency curve is then constructed as 

the average curve of the available dimensionless curves. 

The procedure for developing the regional flood frequency curve is as follow: 

First four LH-moments (L to L4) computed at each station from among the set of 

stations qualifying the homogeneity tests are made dimensionless by dividing them 

with their respective >�� values. Weighted values of these dimensionless LH-moments 

(L to L4) are used to obtain the regional standard LH-moments (L to L4) estimates 

(>M_,�v ). 

>M_,�v = ∑ ,«ARÂ,�«¬«­m∑ ,«¬«­m  (93) 

where, >M_,�v  = Regional standardized LH-moments (L to L4) of order r, 
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bI = No. of years of observation at station i, 

>M_,�I  = Standardized LH-moments (L to L4) of order r at station i, 

¼ = Number of homogeneous stations in the identified region 

Substituting Equation (93) into �K�(�) of Equation (92), it will give the estimated 

regional flood frequency curve of Equation (94) as: 

�K�(�) = �K(�; >M_,�v ), � = 0, 1, 2, 3, 4, … (94) 

Equation (92) is used to calculate the quantiles for each site once the regional flood 

frequency curve is developed according to Equation (94). 

The RFF curve (regional growth curve) is the curve of the quantile versus the 

probability of non-exceedance. For the plotting purpose, the probability of non-

exceedance can be written in terms of Gumbel reduced Variate as given by: 

~ = −�b[−�b�(�)] (95) 

F(x) is the probability of non-exceedance as provided in Equation (9). 

Substituting Equation (7) into Equation (95), we will have: 

~� = −�b S−�b %1 − ��*W (96) 

where, ~� = reduced Gumbel Variate for return period T. 

In general, for a given return period, the corresponding flood quantile can be 

determined from the regional growth curve. Firstly, the reduced Gumbel variate for 

the given return period is determined using Equation (96), and for the particular 

reduced variate, the standardized flood quantile can be read off the growth curve. To 

change this to the actual flood value as provided in Equation (92), the standardized 

quantile is multiplied by the mean of discharge at the site of interest. 
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(2) A relationship between the magnitude of the index-floods, catchment 

characteristics: 

The two major catchment characteristics variables which are responsible to floods 

generation are the drainage area and rainfall. In this case, floods information will be 

transferred from gauged to ungauged sites within a pre-specified hydrologically 

homogeneous region. The end products of the analysis of the available flow data are a 

dimensionless regional frequency curve and a regression equation relating the index 

event with drainage area and rainfall. These three relationships can then be used to 

predict the frequency curve for any ungauged sites. Here the index event is first 

estimated from the drainage area and rainfall of the ungauged sites and a regional 

flood frequency curve will be used to estimate quantiles for ungauged sites. 

The linear multiple regression equation is given by: 

>M�� = � + 8Ä + Å! (97) 

where, >M�� = Dependent variable (mean discharge of ungauged sites), 

       A = Independent variable (catchment area), 

      R = Independent variable (Mean annual rainfall), 

      c = Regression constant (intercept), 

      a = Regression coefficient – slope (area coefficient), 

      b = Regression coefficient – slope (rainfall coefficient) 

Using the least square method, the discharge is regressed upon area and rainfall to 

determine the slope and the intercept of the multiple regression line, and a relationship 

between these and the catchment area and rainfall is used to determine the mean or 

index-flood discharge of an ungauged site. The relationship between the ungauged 

index-flood (>M�,I�
), catchment area (A) and rainfall (R) in log form is given by: 
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>M�,I� = �ÄÆ!Ç  (98) 

By substituting Equation (98) into Equation (92), it will give the quantiles estimate for 

ungauged sites. Therefore, for any given catchment within the homogeneous region, 

flood quantiles for a given return period can be determined by the use of the regional 

growth curve. Since, the value of discharge determined from the regional growth 

curve is a standardized value, it is to be multiplied by the >M�,I�
 (average flood value). 

For gauged catchments, >M�,I�
 can be estimated from the available flood data, while for 

ungauged catchments, >M�,I�
 can be found using Equation (97) or Equation (98). 

3.6 Comparative Study of the Methods 

A comparative study will be performed between regional flood frequency analysis by 

L-moments and LH-moments (selected level) to select the appropriate order of LH-

moments via comparison and analysis of the frequency of observed and estimated 

annual maximum floods.  For this purpose, the relative Root Mean Square Error 

(RMSE) as suggested by Hosking and Wallis (1997) will be used to evaluate the 

precision of the methods of parameter or of quantile estimates of the selected 

distributions using L-moments and LH-moments. The relative RMSE can be 

expressed as: 

!ÈL/ = É �̧ ∑ %�«|�Ê«�« *6I̧J�                   (99) 

where, xi = order set observed values and ��« = computed observation values for a 

given value of Fi. For a complete data series (0 ≤ F ≤1), the non-exceedance 

probabilities (Fi) will be determined based on sample size data and Cunnane’s (1980) 

plotting position formula given by: 

�� = �I = I'^.X,3^.6                 (100) 

where PP = plotting position 

 i = rank number 
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 n = total number of observations 

The steps for undertaking the PP analysis are as follow: 

1. Arrange the observed data in an ascending order. 

2. Assign rank to each of these observations as said in step 1. 

3. Using the rank number (say i), compute the PP for each observation using 

Equation (100). 

4. Using the values of non-exceedance as calculated in step 3, calculate the 

estimated quantiles using the selected distributions of the L-moments and LH-

moments. 

5. Plot observed flood quantiles versus estimated flood quantiles. 

Using Equation (99), the RMSE for the region will be calculated for both L-moments 

and LH-moments (selected level) for the selected distributions. Finally the 

distribution plus the method that gives the minimum RMSE of the L-moments and 

LH-moments will be considered as the best parameter and quantile estimation 

method.
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CHAPTER 4 

4 DATA ANALYSIS AND DISCUSSION OF RESULTS 

4.1 Data Used 

The annual maximum floods observed at 13 gauged sites in the Limpopo catchment 

have been chosen for the study. The details and location of these stations which are 

well spread across the Limpopo region have been given in Table 4.1 and Figure 1.2. 

The observed data with more than 10 years of record have been considered for the 

study. 

Table 4.1: The sites of the study area and their corresponding information 

Name of the 

River/Stream 

Name of the 

Station 

Station 

No. 

Latitude 

(
0
) 

Longitude 

(
0
) 

Catchment 

Area (km
2
) 

Period of Observation 

Average 

Rainfall 

(mm) 

Metsimotlhabe Morwa 2411 24.45 26.07 3400 1975-1996 (22 years) 525 

Metsimotlhabe Thamaga Bridge 2421 24.7 25.55 982 1983-2001 (19 years) 525 

Kolobeng  Kumakwane 2511 24.68 25.67 120 1978-2002 (25 years) 550 

Bonwapitse Ntswaneng 3111 23.27 24.73 1125 1985-2002 (18 years) 450 

Tautswe  Bodungwe Hill 3121 23.25 27.07 630 1985-1996 (12 years) 425 

Mahalaptswe  Madiba 3221 23.05 26.82 840 1971-1994 (24 years) 430 

Lotsane  Maunatlala 3321 22.58 27.63 6385 1979-2007 (29 years) 500 

Lotsane  Palapye 3331 22.55 27.20 3815 1971-1995 (25 years) 450 

Motloutse  Tobane 4121 21.88 28.02 8400 1969-1996 (28 years) 425 

Shashe Lower Shashe 4321 21.55 27.98 7810 1970-2000 (31 years) 410 

Shashe  Mooke Weir 4361 21.48 27.35 2500 1968-2002 (35 years) 430 

Ntse Ntse Weir 4411 21.08 27.58 800 1970-2008 (39 years) 425 

Tati  Tati Weir 4511 21.03 27.43 570 1970-2008 (39 years) 450 

 

4.2 Analysis with L-Moments 

4.2.1 L-moments Statistics 

First the probability weighted moments (PWMs) using Equation (31) have been 

calculated for each station as tabulated in Table 4.2. 
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Table 4.2: Values of Probability Weighted Moments using L-moments 

Name of Site Station No. Sample Size β0 (mean) β1 β2 β3 

Metsimotlhabe 2411 22 32.7 26.0 21.9 19.1 

Metsimotlhabe 2421 19 38.5 29.6 24.3 20.8 

Kolobeng  2511 25 52.7 47.7 43.9 40.8 

Bonwapitse 3111 18 15.1 13.3 12.1 11.2 

Tautswe  3121 12 41.6 37.8 35.6 34.0 

Mahalaptswe  3221 24 3.8 3.0 2.5 2.2 

Lotsane  3321 29 42.4 36.0 32.3 29.7 

Lotsane  3331 25 41.6 35.9 32.5 30.3 

Motloutse  4121 28 175.1 122.6 97.0 81.4 

Shashe 4321 31 390.4 301.3 250.8 216.8 

Shashe  4361 35 168.6 134.3 116.4 105.1 

Ntse 4411 39 56.1 42.9 36.4 32.4 

Tati  4511 39 79.1 61.7 53.2 47.9 

Since the L-moments are related to PWMs, the first four L-moments and L-moment 

ratios have been calculated using Equations (32-35) as shown in Table 4.3. 

Table 4.3: Sample L-moments and L-moment ratios 

Name of Site 
Station 

No. 

Sample 

Size 

Average 

Flow 

(m3/s) 

λ1 λ2 λ3 λ4 
L-CV 

(τ2) 

L-

Skewness 

(τ3) 

L-

Kurtosis 

(τ4) 

Metsimotlhabe 2411 22 32.712 32.712 19.194 8.105 4.777 0.587 0.422 0.249 

Metsimotlhabe 2421 19 38.549 38.549 20.557 7.320 2.250 0.533 0.356 0.109 

Kolobeng  2511 25 52.674 52.674 42.743 29.806 19.755 0.811 0.697 0.462 

Bonwapitse 3111 18 15.062 15.062 11.441 7.996 6.335 0.760 0.699 0.554 

Tautswe  3121 12 41.562 41.562 34.103 28.116 25.457 0.821 0.824 0.746 

Mahalaptswe  3221 24 3.823 3.823 2.128 1.081 0.770 0.557 0.508 0.362 

Lotsane  3321 29 42.403 42.403 29.664 20.096 14.519 0.700 0.677 0.489 

Lotsane  3331 25 41.598 41.598 30.276 21.250 18.540 0.728 0.702 0.612 

Motloutse  4121 28 175.050 175.050 70.218 21.135 14.162 0.401 0.301 0.202 

Shashe 4321 31 390.358 390.358 212.311 87.209 37.164 0.544 0.411 0.175 

Shashe  4361 35 168.586 168.586 100.002 61.264 52.752 0.593 0.613 0.528 

Ntse 4411 39 56.115 56.115 29.680 17.355 12.802 0.529 0.585 0.431 

Tati  4511 39 79.135 79.135 44.339 28.104 23.051 0.560 0.634 0.520 

As explained in Sections 2.4.2 and 2.4.3, the primary use of PWMs (and related L-

moments) is in the estimation of parameters for a probability distribution. However, 

the results of Table 4.2 have been used to calculate the sample L-moments of Table 

4.3, which will help for the tests of whether the Limpopo region is homogeneous as 
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proposed by Hosking and Wallis (1997). In their work, most of the tests involve 

combination of the L-CV, L-skewness and L-kurtosis, and as explained also in detail 

in Section 3.5 of this study. It shall be noted that in a homogeneous region all sites 

have the same population L-moment ratios; however, their sample L-moment ratios 

could be different owing to sampling variability as it can be seen in Table 4.3 and will 

be discussed in Section 4.2.3. 

4.2.2 Discordancy Measure 

The discordancy test has been carried out using equation (79) for all sites and the 

discordancy values are given in Table 4.4. 

Table 4.4: L-moment ratios and discordancy measures 

Name of Site 
Station 

No. 

Sample 

Size 
λ1 (m

3/s) L-CV 
L-

Skewness 
L-Kurtosis Di 

Metsimotlhabe 2411 22 32.7 0.587 0.422 0.249 0.89 

Metsimotlhabe 2421 19 38.5 0.533 0.356 0.109 1.18 

Kolobeng  2511 25 52.7 0.811 0.697 0.462 1.51 

Bonwapitse 3111 18 15.1 0.760 0.699 0.554 0.46 

Tautswe  3121 12 41.6 0.821 0.824 0.746 1.43 

Mahalaptswe  3221 24 3.8 0.557 0.508 0.362 0.11 

Lotsane  3321 29 42.4 0.700 0.677 0.489 0.57 

Lotsane  3331 25 41.6 0.728 0.702 0.612 0.73 

Motloutse  4121 28 175.1 0.401 0.301 0.202 2.08 

Shashe 4321 31 390.4 0.544 0.411 0.175 0.82 

Shashe  4361 35 168.6 0.593 0.613 0.528 0.52 

Ntse 4411 39 56.1 0.529 0.585 0.431 1.52 

Tati  4511 39 79.1 0.560 0.634 0.520 1.18 

Weighted means     0.607 0.565 0.413   

It can be seen from Table 4.4 that the Di values for all sites in the region are less than 

the critical value 2.869 (given by Hosking and Wallis, 1997) for the thirteen sites in 

the study area; and thus there is no discordant site found in this region.  

The plots of sample cumulative variance and skewness of the L-moments are shown 

in Figure 4.1. 
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Figure 4.1: Plots of L-Cv versus L-Skewness 

Figure 4.1 illustrates the L-moments diagram (plots of the L-Cv versus the L-Cs of the 

observed data) under the assumption of one homogeneous region. As indicated in this 

figure, rather considerable dispersion levels are observed in the computed L-Cv and L-

Cs values. The L-moments diagram of Figure 4.1 helps in visual identification on 

whether the sites of a homogeneous group provide similar L-Cv and L-Cs values. 

Hence, it has been found that further evaluation of the study area using heterogeneity 

tests is required. 

4.2.3 Regional Homogeneity 

An L-MOMENT program written in FORTRAN version 3.0-1 written and revised by 

Hosking (2015) has been used for simulations to determine the statistical 

characteristics of homogeneous regions. In line with this, initially the entire catchment 

was assumed as one homogeneous region and homogeneity evaluations were 

performed for the L-moment. Then, simulation with the kappa distribution was 

performed to conduct the Hi tests. The heterogeneity measures Hi, (i=1, 2, 3) were 

calculated for L-moments based on the simulations of the observed standard deviation 

(SD) of  L-Cv, simulated mean of SD of L-Cv/L-Cs and simulated standard deviation 

of SD of L-Cv/L-Ck and 500 sets of simulated data. As discussed in Section 3.5.2, the 

heterogeneity measure (H1) which is related to L-CV is most important and has larger 

effect than variation in L-Cs or L-Ck for assessing the relative level of heterogeneity 

for the proposed region. On the other hand, H2 and H3 which are related to L-Cs and 

L-Ck have low discriminatory power as they are influenced by sample size and 
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presence of extraordinary flows. The results of the heterogeneity tests are presented in 

Table 4.5. 

Table 4.5: Heterogeneity measure for L-moments 

L-moments 
H1 H2 H3 

1.27 0.73 0.28 

From Table 4.5, it can be been observed that the H1 value of 1.27 is slightly greater 

than the criteria value of “acceptably –homogeneous” value, that is 1, and is 

considered as “possibly-homogeneous”. On the other hand the values of Hi, (i=2, 3) 

are less than 1 and identified as the homogeneous region. Since, the value of H1 is not 

far from the homogeneous criterion value of 1, the whole Limpopo region can be 

considered as homogeneous. 

4.2.4 Choice of Suitable Distribution 

4.2.4.1 L-Moments Ratio Diagram 

In the L-moments ratio diagram (Figure 4.2), the theoretical curves of GEV, GLO and 

GPA distributions as well as the regional averages L-skewness and L-kurtosis are 

plotted for selecting the suitable fit distribution. 
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Figure 4.2: L-moments ratio diagram 

With close observation, it can be seen from Figure 4.2 that L-moment identifies GEV 

distribution as the suitable fit distribution for the Limpopo region flood data. The L-

moments ratio diagram can also show that there is a better scattering of data around 

all the three distributions. Therefore, it is difficult to select the best fitting for a region 

on the basis of L-moment ratios diagram only. Hence, the Z-statistic criteria should be 

considered for selecting the best fitting distribution. 

4.2.4.2 Z-Statistics Criteria 

As indicated in Section 3.5.2.1 of item II, the ±²³P� requires evaluation of aX²³P�, 

which has been obtained by performing simulation with the kappa distribution. The 

values of |Z|-statistics for the GEV, GLO and GPA based on the L-moments have 

been calculated and tabulated  in Table 4.6. 
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Table 4.6: |	|-Statistics values 

L-moments 
GLO GEV GPA 

-1.32 -1.23 -2.1 

 

It can be seen from Table 4.6 that values of |Z|-statistic for GEV and GLO 

distributions are less than the critical value 1.64 and qualify for distribution 

candidates. However, the value for GEV distribution is the smallest and GEV has 

been identified as possibly the true regional distribution. 

4.2.5 Parameters Estimation 

Based on the goodness-of-fit criteria discussed above, the GEV using L-moments is 

identified as the best fitting distribution among the three distributions. Accordingly, 

Equations (49-52) for GEV based on the regional average L-moment ratios a6v and a?v 

together with >M� are used for estimates of the parameters of the GEV distribution and 

the results are tabulated in Table 4.7. 

Table 4.7: Regional parameters of the distributions for L-moments 

 
Distributions Parameters     

    Location Scale Shape 

L-moments GEV 0.413 0.400 -0.479 

4.2.6 Flood Quantiles Estimation and Development of Regional Growth Curves 

The quantiles of the regional growth curves of GEV distribution are calculated for the 

L-moments by using values of the regional parameters given in Table 4.7 and 

Equation (47) and the results are presented in Table 4.8. 

Table 4.8: Quantiles estimates for regional growth curves for L-moments at various 

probabilities of non-exceedance using GEV distribution 

Reccurence Interval, T (Years)   2 10 20 50 100 1000 

Probability of non-exceedance (F)   0.5 0.9 0.95 0.98 0.99 0.999 

Gumbel Reduced Variate (Y)   0.37 2.25 2.97 3.90 4.60 6.91 

Estimated Standardized Quantiles, L-GEV, x(F) 0.57 2.03 3.04 5.00 7.15 22.46 
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For the study region, the estimated standardized quantiles at specified recurrence 

intervals (Gumbel Reduced Variates) have been computed and the regional growth 

curve developed for the L-moments as shown in Figure 4.3. 

 

 

Figure 4.3: Regional growth curve using L-moments 

Hence, using the regional growth curve of Figure 4.3 and the mean annual maximum 

flood in Table 4.2, the design flood for the site of interest can be estimated using the 

prediction Equation (92) for desired recurrence intervals. 

4.2.7 Comparison of Observed and Estimated Floods 

To assess the descriptive ability of the suggested distribution using L-moments, the 

relative Root Mean Square Error (RMSE) has been calculated using Equation (99) 

and the results are presented in Table 4.9. 
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Table 4.9: Root Mean Square Error (RMSE) using L-moments 

Sl. No. 
Name of the 

River/Stream 

Station 

No. 

Observed 

Mean Flow 

(m
3
/s) 

Estimated 

Mean Flow 

(m
3
/s) 

RMSE
*
 

1 Metsimotlhabe 2411 32.71 28.94 0.96 

2 Metsimotlhabe 2421 38.55 33.79 0.21 

3 Kolobeng  2511 52.67 46.97 11.08 

4 Bonwapitse 3111 15.06 12.97 1.71 

5 Tautswe  3121 41.56 35.19 7.40 

6 Mahalaptswe  3221 3.82 3.40 0.21 

7 Lotsane  3321 42.40 38.13 0.60 

8 Lotsane  3331 41.60 37.09 1.44 

9 Motloutse  4121 175.05 157.09 0.36 

10 Shashe 4321 390.36 352.24 0.24 

11 Shashe  4361 168.59 153.06 0.22 

12 Ntse 4411 56.11 52.56 0.23 

13 Tati  4511 79.13 74.13 0.29 

Average RMSE       1.92 

*
RMSE calculated based on all the observed and computed values at each station. 

Table 4.9 shows the RMSE values for each site and the regional average using the L-

moment procedure. It is important to see that the RMSE value for Kolobeng is 

distinctively too high. However, the Di for this site is 1.51 (Table 4.4) which is less 

than the critical value, 3, which has also fairly high L-CV as shown on the same table. 

It might be worthwhile to remove this site from Limpopo region if there are physical 

grounds for doing so, but there is no evidence of gross error in the data. 

The regional average RMSE measures the overall deviation of estimated quantiles 

from true quantiles. It is the criterion to which it is given most weight in judging 

whether the estimation procedure is superior to another. Accordingly, the regional 

average RMSE using the L-moment will be compared with the regional average 

RMSE using the LH-moment (L2) in Section 4.4 to conclude the suitability of the 

methods. 

Similarly, graphical comparisons between the observed and estimated flood values at 

corresponding probabilities of non-exceedance, at different sites of the region have 

been undertaken. For this, Cunnane’s (1980) plotting position formula (Equation 100) 
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has been used in order to maintain unbiasedness and minimum variance in 

computation of probabilities of non-exceedance. Examination of the observed and 

estimated floods at different sites showed that a good agreement, in general, can be 

seen from two typical plots as given in Figures 4.4a and b. 
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(a) 

 

(b) 

Figure 4.4: Plot of observed and estimated floods at gauging stations No. 2411 

and 4411, respectively 
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The same plots for other sites have been provided in Figure 4.5. 
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Figure 4.5: Plot of observed and estimated floods at gauging stations No. as 

shown 

It can be seen from Figure 4.5 that observed floods and estimated floods using L-
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sampling error of the flows at those sites. The same situation was also generally 

indicated in NWMPR (2006) and Farquharson (1992) as a caution. Hence, the 

estimated flows at large return periods may not be reliable. Accordingly, special 

attention shall be given when a flood of higher return period is considered. 

4.2.8 Summary 

The Regional Flood Frequency Analysis based on the GEV distribution using the L-

moments can be summarized as follow: 

1. In the step of initial screening of the data, the discordancy measure is used for L-

moments. The discordancy measure shows that data of all gauging sites of this 

study area are suitable for using regional flood frequency analysis by the L-

moments. 

2. As a second step, the heterogeneity test was undertaken. The heterogeneity 

measure shows that the Limpopo region has been found to be homogeneous. 

3. The regional flood frequency analysis in this study was performed for L-moments 

by using the three parameters distributions viz: GLO, GEV and GPA. The L-

moment ratios diagram has been used to identify the suitable distribution for the 

region. Again the |±|-statistic criteria have been used to identify the best suitable 

distribution for the study area. From Table 4.6, it is observed that the |±|-statistic 

value of GEV distribution in L-moment is the smallest among all the |±|-statistic 

value. Therefore, the GEV distribution with L-moment is identified as most 

suitable for regional flood frequency analysis of the Limpopo region. 

4. Based on the GEV regional parameters, the regional quantile estimates with non-

exceedance probability F have been calculated as presented in Table 4.8 and a 

regional growth curve has been developed as shown in Figure 4.3. 

5. The Relative Mean Square Error (RMSE) has been used to compare the observed 

and estimated floods to assess the descriptive ability of the suggested distribution 

using L-moments. According to the result, it has been found that the regional 

average RMSE is 1.92. 
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4.3 Analysis with LH-Moments 

4.3.1 LH-Moments Statistics 

First the probability weighted moments (PWMs) using Equation (38) have been 

calculated for each station as tabulated in Table 4.10. 

Table 4.10: Values of Probability Weighted Moments using LH-moments 

Name of Site 
Station 

No. 

Sample 

Size 

β0 

(mean) 
β1 β2 β3 β4 β5 β6 β7 

Metsimotlhabe 2411 22 32.7 26.0 21.9 19.1 17.1 15.5 14.3 13.3 

Metsimotlhabe 2421 19 38.5 29.6 24.3 20.8 18.2 16.3 14.7 13.4 

Kolobeng  2511 25 52.7 47.7 43.9 40.8 38.3 36.2 34.5 32.9 

Bonwapitse 3111 18 15.1 13.3 12.1 11.2 10.6 10.1 9.7 9.3 

Tautswe  3121 12 41.6 37.8 35.6 34.0 32.8 31.8 31.0 30.2 

Mahalaptswe  3221 24 3.8 3.0 2.5 2.2 2.0 1.9 1.7 1.6 

Lotsane  3321 29 42.4 36.0 32.3 29.7 27.7 26.0 24.6 23.4 

Lotsane  3331 25 41.6 35.9 32.5 30.3 28.6 27.3 26.3 25.5 

Motloutse  4121 28 175.1 122.6 97.0 81.4 70.7 62.9 56.8 51.9 

Shashe 4321 31 390.4 301.3 250.8 216.8 191.8 172.3 156.7 143.7 

Shashe  4361 35 168.6 134.3 116.4 105.1 97.1 91.2 86.4 82.6 

Ntse 4411 39 56.1 42.9 36.4 32.4 29.5 27.2 25.5 24.0 

Tati  4511 39 79.1 61.7 53.2 47.9 44.1 41.2 38.8 36.8 

 

Since the LH-moments (L1 to L4) are related to PWMs, the first four LH-moments 

and LH-moment ratios have been calculated using Equation (37) and Equations (40-

42), respectively, as shown in the following tables (Table 4.11 to Table 4.14). 
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Table 4.11: Sample LH-moments and LH-moment ratios for L1 

Name of Site 
Station 

No. 

Sample 

Size 
λ1

1 λ1
2 λ1

3 λ1
4 

L1-CV 

(τ2) 

L1-

Skewness 
(τ3) 

L1-

Kurtosis 
(τ4) 

Metsimotlhabe 2411 22 26.0 26.6 9.6 5.4 1.026 0.361 0.204 

Metsimotlhabe 2421 19 29.6 28.7 7.7 1.8 0.972 0.268 0.064 

Kolobeng  2511 25 47.7 60.1 35.6 22.4 1.260 0.592 0.373 

Bonwapitse 3111 18 13.3 16.3 10.0 7.7 1.233 0.613 0.473 

Tautswe  3121 12 37.8 50.0 36.4 29.8 1.322 0.728 0.595 

Mahalaptswe  3221 24 3.0 3.1 1.3 0.9 1.039 0.423 0.299 

Lotsane  3321 29 36.0 42.9 24.4 16.0 1.190 0.568 0.372 

Lotsane  3331 25 35.9 43.7 27.4 22.7 1.217 0.625 0.520 

Motloutse  4121 28 122.6 107.0 24.3 15.9 0.872 0.227 0.148 

Shashe 4321 31 301.3 300.4 95.3 34.5 0.997 0.317 0.115 

Shashe  4361 35 134.3 147.8 77.9 62.5 1.100 0.527 0.423 

Ntse 4411 39 42.9 45.0 20.8 14.3 1.048 0.462 0.318 

Tati  4511 39 61.7 67.1 34.8 25.5 1.087 0.519 0.380 

 

Table 4.12: Sample LH-moments and LH-moment ratios for L2 

Name of Site 
Station 

No. 

Sample 

Size 
λ2

1 λ2
2 λ2

3 λ2
4 

L2-CV 

(τ2) 

L2-

Skewness 

(τ3) 

L2-

Kurtosis 

(τ4) 

Metsimotlhabe 2411 22 21.9 32.6 10.8 5.8 1.493 0.332 0.178 

Metsimotlhabe 2421 19 24.3 34.6 7.7 1.6 1.422 0.223 0.046 

Kolobeng  2511 25 43.9 75.6 40.6 25.1 1.722 0.537 0.331 

Bonwapitse 3111 18 12.1 20.8 12.0 9.1 1.720 0.575 0.438 

Tautswe  3121 12 35.6 65.0 43.9 33.4 1.825 0.675 0.515 

Mahalaptswe  3221 24 2.5 3.9 1.5 1.1 1.529 0.397 0.285 

Lotsane  3321 29 32.3 54.2 27.9 16.9 1.676 0.515 0.313 

Lotsane  3331 25 32.5 56.0 33.2 26.7 1.719 0.593 0.477 

Motloutse  4121 28 97.0 131.4 27.7 15.9 1.355 0.211 0.121 

Shashe 4321 31 250.8 365.5 99.5 30.3 1.457 0.272 0.083 

Shashe  4361 35 116.4 187.6 93.5 71.9 1.611 0.498 0.383 

Ntse 4411 39 36.4 56.6 23.9 15.5 1.553 0.423 0.273 

Tati  4511 39 53.2 85.2 40.7 27.2 1.600 0.478 0.319 
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Table 4.13: Sample LH-moments and LH-moment ratios for L3 

Name of Site 
Station 

No. 

Sample 

Size 
λ3

1 λ3
2 λ3

3 λ3
4 

L3-CV 

(τ2) 

L3-

Skewness 

(τ3) 

L3-

Kurtosis 

(τ4) 

Metsimotlhabe 2411 22 19.1 37.6 11.8 6.0 1.972 0.313 0.160 

Metsimotlhabe 2421 19 20.8 39.2 7.6 1.4 1.880 0.194 0.037 

Kolobeng  2511 25 40.8 89.6 45.1 27.8 2.193 0.504 0.310 

Bonwapitse 3111 18 11.2 24.9 13.8 10.4 2.216 0.556 0.419 

Tautswe  3121 12 34.0 79.1 50.6 36.6 2.323 0.640 0.463 

Mahalaptswe  3221 24 2.2 4.5 1.8 1.3 2.026 0.389 0.283 

Lotsane  3321 29 29.7 64.1 30.8 17.6 2.160 0.481 0.274 

Lotsane  3331 25 30.3 67.4 38.8 30.4 2.226 0.576 0.451 

Motloutse  4121 28 81.4 150.0 30.2 15.2 1.844 0.201 0.101 

Shashe 4321 31 216.8 416.9 100.7 25.4 1.923 0.241 0.061 

Shashe  4361 35 105.1 223.0 108.2 81.1 2.121 0.485 0.364 

Ntse 4411 39 32.4 66.4 26.7 16.5 2.051 0.403 0.248 

Tati  4511 39 47.9 100.8 45.7 28.2 2.104 0.453 0.280 

 

Table 4.14: Sample LH-moments and LH-moment ratios for L4 

Name of Site 
Station 

No. 

Sample 

Size 
λ4

1 λ4
2 λ4

3 λ4
4 

L4-CV 

(τ2) 

L4-

Skewness 

(τ3) 

L4-

Kurtosis 

(τ4) 

Metsimotlhabe 2411 22 17.1 41.9 12.5 6.1 2.457 0.298 0.146 

Metsimotlhabe 2421 19 18.2 42.8 7.4 1.4 2.346 0.174 0.033 

Kolobeng  2511 25 38.3 102.4 49.4 30.6 2.671 0.482 0.299 

Bonwapitse 3111 18 10.6 28.8 15.7 11.7 2.716 0.545 0.408 

Tautswe  3121 12 32.8 92.5 56.8 39.2 2.817 0.614 0.424 

Mahalaptswe  3221 24 2.0 5.1 2.0 1.4 2.528 0.388 0.285 

Lotsane  3321 29 27.7 73.1 33.3 18.0 2.642 0.455 0.246 

Lotsane  3331 25 28.6 78.2 44.3 34.0 2.734 0.566 0.434 

Motloutse  4121 28 70.7 165.1 32.0 14.1 2.335 0.194 0.085 

Shashe 4321 31 191.8 458.8 99.7 19.8 2.392 0.217 0.043 

Shashe  4361 35 97.1 255.5 122.4 90.3 2.630 0.479 0.353 

Ntse 4411 39 29.5 75.0 29.2 17.4 2.547 0.389 0.232 

Tati  4511 39 44.1 114.8 49.8 28.6 2.601 0.434 0.249 

4.3.2 Discordancy Measure 

The discordancy test has been carried out using equation (79) for all sites and the 

discordancy values are given in the following tables (Table 4.15 to Table 4.18). 
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Table 4.15: LH-moments ratios and discordancy measures for L1 

Name of Site 
Station 

No. 

Sample 

Size 
λ

1
1 (m

3/s) L1-CV (τ2) 

L1-

Skewness 

(τ3) 

L1-Kurtosis 

(τ4) 
Di 

Metsimotlhabe 2411 22 26.0 1.026 0.361 0.204 0.39 

Metsimotlhabe 2421 19 29.6 0.972 0.268 0.064 1.28 

Kolobeng  2511 25 47.7 1.260 0.592 0.373 1.40 

Bonwapitse 3111 18 13.3 1.233 0.613 0.473 0.61 

Tautswe  3121 12 37.8 1.322 0.728 0.595 1.24 

Mahalapswe  3221 24 3.0 1.039 0.423 0.299 0.19 

Lotsane  3321 29 36.0 1.190 0.568 0.372 0.74 

Lotsane  3331 25 35.9 1.217 0.625 0.520 0.86 

Motloutse  4121 28 122.6 0.872 0.227 0.148 2.33 

Shashe 4321 31 301.3 0.997 0.317 0.115 0.89 

Shashe  4361 35 134.3 1.100 0.527 0.423 0.63 

Ntse 4411 39 42.9 1.048 0.462 0.318 1.04 

Tati  4511 39 61.7 1.087 0.519 0.380 1.39 

Weighted means 1.091 0.470 0.322   

 

Table 4.16: LH-moments ratios and discordancy measures for L2 

Name of Site 
Station 

No. 

Sample 

Size 
λ

2
1 (m

3
/s) L2-CV (τ2) 

L2-

Skewness 

(τ3) 

L2-Kurtosis 

(τ4) 
Di 

Metsimotlhabe 2411 22 21.9 1.493 0.332 0.178 0.21 

Metsimotlhabe 2421 19 24.3 1.422 0.223 0.046 1.51 

Kolobeng  2511 25 43.9 1.722 0.537 0.331 1.20 

Bonwapitse 3111 18 12.1 1.720 0.575 0.438 0.71 

Tautswe  3121 12 35.6 1.825 0.675 0.515 1.29 

Mahalapswe  3221 24 2.5 1.529 0.397 0.285 0.44 

Lotsane  3321 29 32.3 1.676 0.515 0.313 0.95 

Lotsane  3331 25 32.5 1.719 0.593 0.477 0.90 

Motloutse  4121 28 97.0 1.355 0.211 0.121 1.87 

Shashe 4321 31 250.8 1.457 0.272 0.083 0.95 

Shashe  4361 35 116.4 1.611 0.498 0.383 0.71 

Ntse 4411 39 36.4 1.553 0.423 0.273 0.76 

Tati  4511 39 53.2 1.600 0.478 0.319 1.50 

Weighted means 1.580 0.432 0.282   
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Table 4.17: LH-moments ratios and discordancy measures for L3 

Name of Site 
Station 

No. 

Sample 

Size 
λ

3
1 (m

3/s) L3-CV (τ2) 

L3-

Skewness 

(τ3) 

L3-Kurtosis 

(τ4) 
Di 

Metsimotlhabe 2411 22 19.1 1.972 0.313 0.160 0.28 

Metsimotlhabe 2421 19 20.8 1.880 0.194 0.037 1.81 

Kolobeng  2511 25 40.8 2.193 0.504 0.310 0.83 

Bonwapitse 3111 18 11.2 2.216 0.556 0.419 0.71 

Tautswe  3121 12 34.0 2.323 0.640 0.463 1.49 

Mahalapswe  3221 24 2.2 2.026 0.389 0.283 0.73 

Lotsane  3321 29 29.7 2.160 0.481 0.274 1.14 

Lotsane  3331 25 30.3 2.226 0.576 0.451 0.91 

Motloutse  4121 28 81.4 1.844 0.201 0.101 1.45 

Shashe 4321 31 216.8 1.923 0.241 0.061 0.99 

Shashe  4361 35 105.1 2.121 0.485 0.364 0.71 

Ntse 4411 39 32.4 2.051 0.403 0.248 0.67 

Tati  4511 39 47.9 2.104 0.453 0.280 1.29 

Weighted means 2.070 0.410 0.258   

 

Table 4.18: LH-moments ratios and discordancy measures for L4 

Name of Site 
Station 

No. 

Sample 

Size 
λ

4
1 (m

3
/s) L4-CV (τ2) 

L4-

Skewness 

(τ3) 

L4-Kurtosis 

(τ4) 
Di 

Metsimotlhabe 2411 22 17.1 2.457 0.298 0.146 0.30 

Metsimotlhabe 2421 19 18.2 2.346 0.174 0.033 2.04 

Kolobeng  2511 25 38.3 2.671 0.482 0.299 0.48 

Bonwapitse 3111 18 10.6 2.716 0.545 0.408 0.74 

Tautswe  3121 12 32.8 2.817 0.614 0.424 1.69 

Mahalapswe  3221 24 2.0 2.528 0.388 0.285 1.02 

Lotsane  3321 29 27.7 2.642 0.455 0.246 1.19 

Lotsane  3331 25 28.6 2.734 0.566 0.434 0.92 

Motloutse  4121 28 70.7 2.335 0.194 0.085 1.13 

Shashe 4321 31 191.8 2.392 0.217 0.043 1.03 

Shashe  4361 35 97.1 2.630 0.479 0.353 0.69 

Ntse 4411 39 29.5 2.547 0.389 0.232 0.49 

Tati  4511 39 44.1 2.601 0.434 0.249 1.28 

Weighted means 2.561 0.395 0.241   

 

It can be seen from Table 4.15 to Table 18 that the Di values for all sites in the region 

are less than the critical value 2.869 (given by Hosking and Wallis, 1997) for the 



67 

 

thirteen sites in the study area; and thus there is no discordant site found in the study 

region.  

The plots of sample cumulative variance and skewness of the LH-moments are shown 

in Figure 4.5 for L1 to L4. 

 
 

 

   

 

     

          

          

          

          

          

          

          

          

          

          

          

           

 
 

   

 

     

          

          

          

          

          

          

          

          

          

          

          
Figure 4.6: Plots of L1- Cv, L2- Cv, L3- Cv and L4-Cv versus L1-Skewness, L2-

Skewness, L3-Skewness and L4-Skewness 

Figure 4.6 illustrates the LH-moment diagrams (plots of the LH-Cv versus the LH-Cs 

from L1 to L4 of the observed data) under the assumption of one homogeneous region. 

However, LH-Cv and LH-Cs of level one (L1) shows considerable dispersion of the 

data while level two to four (L2 to L4) of the same figure indicates more appropriate 
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grouping of data in the region. Hence, it has been found that further evaluation of the 

study area using heterogeneity tests is required. 

4.3.3 Regional Homogeneity 

Initially the entire catchment was assumed as one homogeneous region and 

homogeneity evaluations were performed for the LH-moments. Then, simulation with 

the kappa distribution was performed to conduct the Hi tests. The heterogeneity 

measures Hi, (i=1, 2, 3) were calculated for LH-moments based on the simulations of 

the observed standard deviation (SD) of  LH-Cv, simulated mean of SD of LH-Cv/L-

Cs and simulated standard deviation of SD of LH-Cv/L-Ck and 500 sets of simulated 

data. As discussed in Section 3.5.2, the heterogeneity measure (H1) which is related to 

LH-CV is most important and has larger effect than variation in LH-Cs or LH-Ck for 

assessing the relative level of heterogeneity for the proposed region. On the other 

hand, H2 and H3 which are related to LH-Cs and LH-Ck, respectively, have low 

discriminatory power as they are influenced by sample size and presence of 

extraordinary flows. The results of the heterogeneity tests based on the LH-moment 

are presented in Table 4.19. 

Table 4.19: Heterogeneity measure for LH-moments 

LH-moments H1 H2 H3 

L1 -0.15 -0.15 0.14 

L2 -0.08 -0.08 0.18 

L3 -0.05 -0.05 0.29 

L4 -0.22 -0.22 0.46 

 

From Table 4.19, it has been observed that the Hi, (i=1, 2, 3) values for each LH-

moments �� , � = 1, 2, 3, 4, that is, (L1 to L4) are less than 1 and identified as the 

homogeneous region.  

In general, since the value of H1 1.27 for L-moments is not far from the “acceptably 

homogeneous” criterion value of 1 and based on other LH-moments, that is, L1, L2, L3 



69 

 

and L4 the region has been identified as “acceptably homogeneous”, we can therefore 

consider the whole Limpopo region under study is homogeneous. 

4.3.4 Choice of Suitable Distribution 

4.3.4.1 LH-Moments Ratio Diagrams 

In the LH-moments ratio diagram, the theoretical curves of GEV, GLO and GPA 

distributions for each level of LH-moments (L1 to L4) as well as the regional average 

LH-skewness and LH-kurtosis are plotted for selecting the best fit distribution (Figure 

4.7). 

The LH-moments ratio diagrams for the LH-moments �� , � = 1, 2, 3, 4, that is, (L1 to 

L4) are shown in Figure 4.7. It has been observed from Figure 4.7 that L1 and L2-

moments identify GEV distribution as the best fit distribution for the Limpopo river 

system. Similarly, LH-moments of L3 as well as L4 identify GPA distribution as the 

best fitting distribution. On the other hand, Figure 4.7 indicates two rather different 

patterns for cases �=1, 2 and �˃2. For the case of LH-moments �=1, 2, there is better 

scattering of data around GEV and GPA. However, for the case of �˃2, most of the 

data points fall below the positions of GLO, but better scattered around the GPA 

distribution. Therefore, it is difficult to select the best fitting for a region on the basis 

of LH-moment ratio diagrams only. Hence, the Z-statistic criteria should be 

considered for selecting the best fitting distribution as discussed in the subsequent 

section. 
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Figure 4.7: LH-moments (L1 to L4) ratio diagrams 
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values of |Z|-statistics for the GEV, GLO and GPA based on L1, L2, L3 and L4-

moments were then calculated as shown in Table 4.20. It has been observed from 

Table 4.20 that values of |Z|-statistic for GEV and GLO distributions are less than the 

critical value 1.64 for all the LH-moments �� , � = 1, 2, 3, 4, that is, (L1 to L4). 

Similarly, in case of GPA distribution, the values of |Z| -statistic are less than the 

critical value 1.64 for the LH-moments �� , � = 2, 3, 4, that is, L2, L3 and L4, but the 

LH-moments �� , � = 1, that is, L1 gave values greater than the critical value 1.64. 

Nevertheless, L2-moment has given the smallest value for the GEV distribution, and 

therefore, the GEV distribution is identified as the best fitting distribution among the 

three distributions used for this study region based on L2-moments. 

 

Table 4.20: |	|-statistics values 

LH-moments GLO GEV GPA 

L1 -0.35 -0.61 -1.77 

L2 0.26 -0.10 -1.50 

L3 0.69 0.26 -1.31 

L4 1.03 0.54 -1.16 

 

Wang (1997) identified a reversing trend in improved performance of the GEV 

distribution at the LH-moments level 3 (L3) during the goodness-of-fit test; and the 

same trend has been also observed in this study as shown in Table 4.20. Similarly, in 

the same table, the same trend has been also observed for GLO distribution. As for the 

case of the GPA distribution, an improved performance was observed for all levels 

moving from L1 to L4. Then unlike the GEV distribution as identified by Wang (1997) 

(suggesting that additional investigations should be stopped at the L2 level), it implies 

that it is possible to search for improved results by continuing on to the L4 level of the 

GPA distributions (Meshgi and Khalili, 2007b). 
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4.3.5 Parameters Estimation 

Based on the goodness-of-fit criteria discussed above, the GEV distribution using L2-

moments has been identified as the best fitting distribution among the three 

distributions for fitting the data. Accordingly, Equations (53-56) for GEV based on 

the regional average LH-moment ratios a6,6v  and a6,?v  together with >M�6, for �6,�=2, are 

used for estimates the parameters of the GEV distribution and is presented in Table 

4.21. 

Table 4.21: Regional parameters of the distributions for LH-moments, L2, �=2 

LH-moments Distribution Parameters     

    Location (ÍÁ) Scale (Î�) Shape (Ï�) 

L2-moments GEV 0.379 0.455 -0.434 

 

4.3.6 Flood Quantiles Estimation and Development of Regional Growth Curves 

The quantiles of the regional growth curves of GEV distribution are calculated for the 

LH-moments, �6,� = 2 by using the regional parameters of Table 4.21 and Equation 

(47) and the results are presented in Table 4.22. 

Table 4.22: Quantiles estimates for regional growth curves of GEV distribution for 

LH-moments, 
�,� = 2 at various probabilities of non-exceedance using GEV 

distribution 

Reccurence Interval, T (Years)   2 10 20 50 100 1000 

Probability of non-exceedance (F)   0.5 0.9 0.95 0.98 0.99 0.999 

Gumbel Reduced Variate (Y)     0.37 2.25 2.97 3.90 4.60 6.91 

Estimated Standardized Quantiles, L2-GEV, x(F) 0.56 2.11 3.14 5.03 7.05 20.31 

For Limpopo region, the estimated standardized quantiles at specified recurrence 

intervals (Gumbel Reduced Variates) have been computed and growth curves 

developed for LH-moments (L2) as shown in Figure 4.8 
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Figure 4.8: Regional growth curve for Limpopo region using LH-moment (L2) 

Hence, using the regional growth curve of Figure 4.8 and the mean annual maximum 

flood in Table 4.2, the design flood for the site of interest can be estimated using the 

predication Equation (92) for desired recurrence intervals. 

4.3.7 Comparison of Observed and Estimated Floods 

To assess the descriptive ability of the suggested distribution using LH-moments (L2), 

the relative Root Mean Square Error (RMSE) has been calculated using Equation (99) 

and the results are presented in Table 4.23. 
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Table 4.23: Root Mean Square Error (RMSE) using LH-moment (L2) 

Sl. No. 
Name of the 

River/Stream 
Station No. 

Observed 

Mean Flow 

(m
3
/s) 

Estimated 

Mean Flow 

(m
3
/s) 

RMSE
*
 

1 Metsimotlhabe 2411 32.7 30.2 0.31 

2 Metsimotlhabe 2421 38.5 35.5 0.23 

3 Kolobeng  2511 52.7 48.6 8.51 

4 Bonwapitse 3111 15.1 13.9 1.38 

5 Tautswe  3121 41.6 38.2 4.22 

6 Mahalapswe  3221 3.8 3.5 0.29 

7 Lotsane  3321 42.4 40.7 0.54 

8 Lotsane  3331 41.6 38.4 0.72 

9 Motloutse  4121 175.1 168.2 0.38 

10 Shashe 4321 390.4 374.3 0.21 

11 Shashe  4361 168.6 161.4 0.27 

12 Ntse 4411 56.1 53.6 0.33 

13 Tati  4511 79.1 75.6 0.39 

Average RMSE       1.37 

*
RMSE calculated based on all the observed and computed values at each station. 

Table 4.23 shows the RMSE values for each site and the regional average using the 

LH-moment (L2) procedure. Though generally the RMSE value for Kolobeng has 

dropped as compared to the one in L-moment, it is also important to see that the 

RMSE value is still distinctively high. In similar explanation to Section 4.2.7, there is 

no physical ground and evidence of gross error in the data as long as its Di value of 

0.83 is less than the critical value of 3. 

The regional average RMSE measures the overall deviation of estimated quantiles 

from true quantiles. It is the criterion to which it is given most weight in judging 

whether the estimation procedure is superior to another. Accordingly, the regional 

average RMSE using the LH-moment (L2) will be compared with the regional average 

RMSE using the L-moment in Section 4.4 to conclude the suitability of the methods. 
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Similarly, graphical comparisons between the observed and estimated flood values at 

corresponding probabilities of non-exceedance, at different sites of the region have 

been undertaken. For this, Cunnane’s (1980) plotting position formula (Equation 100) 

has been used in order to maintain unbiasedness and minimum variance in 

computation of probabilities of non-exceedance. Examination of the observed and 

estimated floods at different sites showed that a good agreement, in general, can be 

seen from two typical plots as given in Figures 4.9a and b.  
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(b) 

Figure 4.9: Plot of observed and estimated floods at gauging stations No. 2411 

and 4411, respectively 

The same plots for other sites have been provided in Figure 4.10. 

0

100

200

300

400

500

0 100 200 300 400 500

E
st

im
a

te
d

 f
lo

o
d

 v
a

lu
e

s 
(m

3
/s

)

Observed flood values (m3/s)

4411

Observed vs Estimated

Linear (Theoretical relationship)



78 

 

0

40

80

120

160

0 50 100 150 200

E
st

im
a

te
d

 f
lo

o
d

 v
a

lu
e

s 
(m

3
/s

)

Observed flood values (m3/s)

2421

Observed vs estimated

Linear (Theoretical relationship)

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800

E
st

im
a

te
d

 f
lo

o
d

 v
a

lu
e

s 
(m

3
/s

)

Observed flood values (m3/s)

2511

Observed vs estimated

Linear (Theoretical relationship)



79 

 

0

40

80

120

0 40 80 120 160 200

E
st

im
a

te
d

 f
lo

o
d

 v
a

lu
e

s 
(m

3
/s

)

Observed flood values (m3/s)

3111

Observed vs Estimated

Linear (Theoretical relationship)

0

80

160

240

320

0 80 160 240 320 400 480

E
st

im
a

te
d

 f
lo

o
d

 v
a

lu
e

s 
(m

3
/s

)

Observed flood values (m3/s)

3121

Observed vs Estimated

Linear (Theoretical relationship)



80 

 

0

5

10

15

20

25

30

0 5 10 15 20 25 30

E
st

im
a

te
d

 f
lo

o
d

 v
a

lu
e

s 
(m

3
/s

)

Observed flood values (m3/s)

3221

Observed vs Estimated

Linear (Theoretical relationship)

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400

E
st

im
a

te
d

 f
lo

o
d

 v
a

lu
e

s 
(m

3
/s

)

Observed flood values (m3/s)

3321

Observed vs estimated

Linear (Theoretical relationship)



81 

 

0

100

200

300

400

500

0 100 200 300 400 500 600

E
st

im
a

te
d

 f
lo

o
d

 v
a

lu
e

s 
(m

3
/s

)

Observed flood values (m3/s)

3331

Observed vs Estimated

Linear (Theoretical relationship)

0

100

200

300

400

500

600

0 100 200 300 400 500 600

E
st

im
a

te
d

 f
lo

o
d

 v
a

lu
e

s 
(m

3
/s

)

Observed flood values (m3/s)

4121

Observed vs estimated

Theoretical Relationship



82 

 

0

400

800

1200

1600

2000

0 400 800 1200 1600 2000

E
st

im
a

te
d

 f
lo

o
d

 v
a

lu
e

s 
(m

3
/s

)

Observed flood values (m3/s)

4321

Observed vs estimated

Linear (Theoretical Relationship)

0

400

800

1200

1600

2000

0 400 800 1200 1600 2000

E
st

im
a

te
d

 f
lo

o
d

 v
a

lu
e

s 
(m

3
/s

)

Observed flood values (m3/s)

4361

Observed vs Estimated

Linear (Theoretical relationship)



83 

 

 

Figure 4.10: Plot of observed and estimated floods at gauging stations No. as 

shown 

It can be seen from Figure 4.10 that observed floods and estimated floods using LH-

moment (L2) for some sites at some recording periods are not in agreement. In line 

with Section 1.2, this could be attributed due to mainly the measurement and extreme 

sampling error of the flows at those sites. The same situation was also generally 

indicated in NWMPR (2006) and Farquharson (1992) as a caution. Hence, the 

estimated flows at large return periods may not be reliable; and accordingly, special 

attention shall be given when a flood of higher return period is considered. 

4.3.8 Summary 

The Regional Flood Frequency Analysis based on the GEV distribution using the LH-

moments can be summarized as follow: 

1. In the step of initial screening of the data, the discordancy measure is used for all 

LH-moments (L1 to L4). The discordancy measure shows that data of all gauging 

sites of this study area are suitable for using regional flood frequency analysis by 

all the LH-moments. 
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2. For testing homogeneity of the region for all the LH-moments (L1 to L4), the L-

moment based heterogeneity measure is used, and extended it to all the LH-

moments. The heterogeneity measure shows that the Limpopo region has been 

found to be homogeneous for all the LH-moments. 

3. The regional flood frequency analysis was performed for LH-moments (L1 to L4) 

by using the three parameters distributions viz: GLO, GEV and GPA. The LH-

moment ratios diagram is used to identify the suitable distribution for each LH-

moment levels for the region. Again the |±|-statistic criteria have been used to 

identify best suitable distribution for the study area. From Table 4.20, it is 

observed that the |±|-statistic value of GEV distribution in L2-moment is the 

smallest among all the |±|-statistic value. Therefore, the GEV distribution with 

L2-moment is identified as most suitable for regional flood frequency analysis of 

the Limpopo region. 

4. Based on the GEV regional parameters, the regional quantile estimates with non-

exceedance probability F have been calculated as presented in Table 4.22 and a 

regional growth curve has been developed as shown in Figure 4.8. 

5. The Relative Mean Square Error (RMSE) has been used to compare the observed 

and estimated floods to assess the descriptive ability of the suggested distribution 

using LH-moment (L2). According to the result, it has been found that the regional 

average RMSE is 1.37. 

4.4 Discussion of Results 

Based on the statistical analysis results with L-moments and LH-moments (L2), the 

following summary can be provided: 

1. Generally, L-moment as well as well as LH-moment of level 2 (L2) have provided 

correlated quantile results based on GEV distribution as presented in Table 4.8 

and Table 4.22, respectively. 

2. L-moment in general shows a better fit with the developed GEV distribution for 

the data series (0.5 ≤ F ≤ 0.95) and is better than the results obtained using LH-

moment of level 2 (L2) based on GEV distribution as shown in the regional 

growth curves of Figure 4.11. 
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Figure 4.11: Regional growth curves using LH-moments (L2) and L-moments 

On the other hand, for the data series (0.95 ≤ F ≤ 1), it is clear that the GEV using L2-

moments method is the best fit as compared to the L-moments method. 

3.  In line with item 2 above and Figure 4.11, the GEV/L-moment regional growth 

curve shows the highest deviation whereas GEV/L2-moment is the least deviated 

fit at the large return periods. 

4. For a complete data series (0 ≤ F ≤ 1), the same figure clearly shows that GEV 

distribution using LH-moments (L2) is better than the L-moments to characterize 

the flood data of the Limpopo region. 

5. Based on item 2 above, generally L-moment is more efficient than the LH-

moment for shorter return periods; whereas LH-moments are more efficient than 

the L-moments for higher return periods. 

6. Statistical analysis of extremes is often conducted for predicting large return 

period events and thus LH-moments are suitable methods to predict larger events. 

7. The relative Root Mean Square Error (RMSE) based on the observed and 

estimated floods was calculated using the L-moment and LH-moment (L2) as 

shown in Table 4.24. 
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Table 4.24: Summary Root Mean Square Error (RMSE) for L- and LH-moments 

Distribution Method RMSE 

GEV 
L-moment 1.92 

LH-moment (L2) 1.37 

 

8. From Table 4.24, it can be seen that the RMSE for GEV distribution using LH-

moment (L2) is smaller than the L-moment based on the same distribution. This 

inference can also be seen from Table 4.9 and Table 4.23 that the design floods 

that have been derived using LH-moment (L2) method tended to approach the 

design floods by the observed annual maximum floods. Thus, in summary, it can 

be said GEV distribution using LH-moment (L2) provides a better fit to the annual 

maximum flood data of the Limpopo region. 

9. Based on item 8 above and using LH-moments at level 2 (L2), the prediction 

equation for estimation of flood quantiles at different non-exceedance 

probabilities using the location (�), scale (y) and shape (f) parameters of Table 

4.21 and Equation (47) can be given as: 

 

ÀÁI(�) = [−0.671 + 1.050(−�b�)'^.X?X] ∗ >M�,I6     (101) 

 

4.5 Flood Estimation for Ungauged Basins 

Ungauged basins are those which lack sufficient streamflow data or data at all are not 

available which needs to be predicted using other available data / information from 

the relevant catchment or using other catchment. However, there are various methods 

for prediction of floods for such ungauged river basins like using catchment 

characteristics as discussed in the subsequent sections.  

4.5.1 Procedures 

Two major variables which are responsible for flood generation viz: drainage area (A 

in km
2
) and mean annual rainfall (R in mm) were used for the estimation of the L2-

moment (>M�6) or the index flood in (m
3
/s) at ungauged sites. For this purpose, the 
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iterative solving algorithm software SPSS ver. 16 – EQUiNOX has been used to 

develop best-fit prediction equation. Preference was originally given to power-form 

function equations but it has been found this form did not provide good results as 

measured by the coefficient of determination (R
2
). The regression analysis has been 

therefore expanded to a linear relationship of the regression analysis between the 

observed average annual maximum floods (�̅ in m
3
/s), drainage area (A in km

2
) and 

mean annual rainfall (R in mm) at different sites of the region have been undertaken 

and the regression results are presented in Table 4.25. 

 

Table 4.25: Regression results 

 

Based on the statistical results of Table 4.25 and Equation (97), the mean annual 

maximum flood can be derived as: 

>M�6 = 338.165 + 0.021Ä − 0.675!               (102) 
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and the relationship yielded a coefficient of correlation equal to 0.5120 which is 

compared to critical coefficient of 0.4821 at 15 degrees of freedom and 5% 

significance, is reasonably high and can be accepted.  

For development of the regional flood frequency relationship for estimation of floods 

of various return periods for ungauged basins, the regional flood frequency 

relationship given in Equation (101) can be coupled with the regional relationship 

given by Equation (102) and the following regional flood frequency relationship has 

been developed. 

ÀÁI(�) = −226.992 − 0.014Ä + 0.453! + (355.089 + 0.022Ä − 0.709!)(−�b�)'^.X?X         (103) 

Therefore, for any given catchment within the homogeneous region, flood quantiles 

for a given return period can be determined by the use of Equation (103). 

4.5.2 Flood Estimation at Gauged Site Using Equation (102) 

Assuming the site at station 4411 has not been gauged. Let it be assumed also that a 

100 years return period flood is required to be estimated. Then, knowing the area A 

and mean annual rainfall R from Table 4.1 as 800km
2
 and 425mm, respectively, the 

mean annual maximum flood >M�6 using Equation (102) gives 68.09m
3
/s. From the 

growth curve of Figure 4.8, for T=100 years return period, the standardised quantile �K 

is read off as 7.05. Then the estimated flood quantile is calculated as ÀÁI(��^^) = 

7.05*68.090 = 479.77m
3
/s. 

The observed annual maximum flood for the same region is 56.115m
3
/s and the 

standardised quantile �K for T100 return period is 7.05. Then the estimated flood 

quantile for the same station is calculated using the regional Equation (101) as 

ÀÁI(��^^) = 7.05*56.12 = 395.39m
3
/s. Thus, when the estimated flood of 479.77m3/s is 

compared to 395.39m3/s as calculated from the regional equation, the percentage 

error is found to be 21%, which is acceptable for higher return period. For example, 

the percentage error for a return period of 50 years, the percentage error would be 

14%. Therefore, due to the short time series available for most of the stations, the 
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flood frequency analysis results for longer recurrence intervals should be viewed with 

caution. 

 

4.6 Reference to Previous Studies 

As indicated in Section 2.1, there are some previous related studies undertaken in 

relation to the Botswana flood frequency analysis. However, in nearly all of such 

studies, the objectives were different from the main objectives in this study. 

Nevertheless, as a reference, below are some of the studies which were undertaken on 

floods in Botswana. 

1. Farquharson et al. (1992) carried out a study to estimate mean annual flood 

(MAF) based on data from 42 catchments in Botswana and South Africa. 

Accordingly, they developed a regional growth curve which could be used for 

large-scale applications. 

2. NWMPR (2006) undertook a study on the surface water resources of Botswana. 

This study did not develop a regional growth curve, and the short period of data 

was cited as the main hindrance. 

3. Parida (2004) carried out a study on the flood characteristics of selected rivers in 

Botswana using L-moments method and regionalization technigue, which was 

addressed based on limited data. The datasets used by Parida (2004) for analysis 

was based on flood records from the selected streams which varied between 10 

and 34 years with an average of 25 years; whereas in this study the records varied 

between 12 and 39 years with an average of 27 years and thus in this study 

relatively more data for longer period of time have been collected after a study by 

Parida (2004) was conducted. And as such the longer the flow records the better 

improved design events. This argument is supported and can be seen in Figure 

4.12 as the regional growth curve developed by this study is relatively the least 

deviated fit as compared with that of a study by Parida (2004). However, the 

average flow records by Parida (2004) and this study do not have as such 

significant differences and according to Figure 4.12 the regional growth curves 
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developed by Parida (2004) and by this study using the L-moment method are in 

agreement. 

 

Figure 4.12: Regional growth curves by Parida (2004) and this study 

 

0

5

10

15

20

25

0.0 1.2 2.4 3.6 4.8 6.0 7.2 8.4

S
ta

n
d

a
rd

iz
e

d
 Q

u
a

n
ti

le
s

Gumbel Reduced Variates

L-moments

GEV-this study

GEV-Parida (2004)



91 

 

CHAPTER 5 

5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This study investigated and compared the newer available methods of parameter and 

quantile estimates viz: the L-moments and LH-moments using the commonly used 

three parameter distributions, that is, the generalized extreme value (GEV), 

generalized logistic (GLO) and generalized Pareto (GPA) distributions to develop 

regional growth curves that can be used for estimation of quantiles at either gauged or 

ungauged sites. The goodness-of-fit criteria using LH-moments show that generally 

GEV distribution well fitted the Limpopo flood data followed by GLO and GPA, 

respectively, except in L1 in GPA as |Z|-statistics value of 1.77 is slightly greater than 

the critical value of 1.64 (please refer Table 4.20).  

The following conclusions can be drawn from the Regional Flood Frequency Analysis 

(RFFA) of this study area: 

1. The RFFA was carried out based on real flood data from the selected gauged 

streams whose records varied between 12 and 39 years with an average of 27 

years. 

2. The heterogeneity test has revealed that all the 13 gauged sites in the Limpopo 

catchment have been found to be homogeneous for all LH-moments levels (L to 

L4). 

3. The goodness-of-fit criteria (|±|-statistics criteria) showed that GEV and GLO 

distributions fitted the data appropriately in both L-moments and LH-moments. 

Though GEV has been found to be the suitable distribution in L-moments, the 

GEV using LH-moments of level 2 (L2) has been found to be the best suitable 

frequency distribution to characterize the flood data of the Limpopo region. 

4. Further evaluation and comparison of the two methods (L-moments, L and LH-

moments, L2) using the relative Root Mean Square Error (RMSE) concluded that 
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again GEV using the LH-moments (L2) with minimum RMSE found to be the best 

distribution that can model the floods of Limpopo region accurately. 

5. Generally, it can be concluded that the LH-moments gave improved results 

compared to the L-moments as discussed in detail in Section 4.4. 

6. For ungauged sites, a general equation between the average flood, catchment area 

and annual average rainfall has also been developed, which can be used in 

conjunction with values from the regional frequency curve (also known as the 

regional growth curve) for reliable estimation of design flood values of this study 

area. 

5.2 Recommendations 

The following recommendation can be drawn from the Regional Flood Frequency 

Analysis of this study area: 

1. Flood frequency analysis is a dynamic process. Established methods are improved 

and changed with time and more reliable data for longer periods are collected 

from time to time. Therefore, because of the sensitivity of the issue of floods and 

moreover for water resources planning, development and management, the flood 

frequency of the Limpopo region should be revised any time and modifications 

shall be made to the established procedure, particularly if the same procedure 

would be used in the study of floods of the Limpopo region. 

2. From the goodness-of-fit measure, several probability distributions emerged as 

possibly likely distributions for the area under study. The applicability of these to 

this study area should be investigated more to arrive at a more conclusive 

decision. 

3. While the L-moments method has been developed for estimation of the 

parameters of many of the distributions, the LH-moments method (L1 to L4) has 

been developed for only three common distributions viz: GEV, GLO and GPA.  

As such many researchers have been investigating more on the parameter 

estimations of the LH-moments method; and therefore, it is recommended that the 

LH-moments method attempted in this Dissertation shall be revisited based on the 

findings on the subsequent developments of this method. 
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