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Abstract

This dissertation considers the optimal portfolio strategies for an investor that obtains

stochastic income and gives out stochastic cash outflows under inflation protection.

The Investor trades on a complete diffusion model, receives a stochastic wage income

and pays a stochastic cash outflow to its holder. The stochastic income is invested into

a market that is characterized by a cash account, an inflation linked bond and a stock.

The inflation risks associated with the investment could be hedged by investing in

inflation-linked bond. The solutions to the Investor problem of seeking the optimal

portfolio are formulated and worked out as stochastic control problem. The cash

account is deterministic, and the inflation-linked bond and the stock are geometric.

The optimal portfolio strategies for this Investor are solved and the utility function

considered is assumed to be a quassi-concave function of the value of wealth and

power utility is utilized. The optimal portfolio of the Investor in the cash account, in

the inflation linked bond, and in the stock market were established.
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3.1.16 Itô Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.17 The Brownian Martingale Representation Theorem . . . . . . 42

3.1.18 The Girsanov Theorem . . . . . . . . . . . . . . . . . . . . . . 43



CONTENTS xv

3.1.19 Existence And Uniqueness Theorem For Stochastic Differential

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.20 Stochastic Differential Equations (SDEs) . . . . . . . . . . . . 45

3.2 Stochastic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Dynamic Programming Principle . . . . . . . . . . . . . . . . . . . . 48

4 The Model 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 The Dynamics of the Stochastic Wage Income . . . . . . . . . 61

4.2.2 The Dynamics of the Stochastic Cash Outflows . . . . . . . . 65

4.3 The Dynamics of the Wealth Process . . . . . . . . . . . . . . . . . . 69

4.4 Discounted Income and Discounted Outflow Processes . . . . . . . . . 70

4.4.1 Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Wealth Valuation of the Investor . . . . . . . . . . . . . . . . . . . . 81

4.5.1 Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Optimal Portfolio Strategies for the Investor . . . . . . . . . . . . . . 84

4.6.1 Optimal Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . 85



xvi CONTENTS

5 Discussion and Results 105

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 General assumptions . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Conclusion 109



Chapter 1

Introduction

This subject called mathematics is used in many fields like finance, economics, sci-

ence and engineering. Mathematics is very broad and ranges from fields of pure

mathematics to fields of applied mathematics. In applied mathematics, which we are

interested in, for example, we have branches such as, mathematics of finance. The

branch mostly utilizes the knowledge of Stochastic Differential Equations (SDEs), for

the calculation of optimal portfolios. Mathematics of finance, a very important tool

in finance, is also used in the modelling of option prices.

Taking the work of (Nkeki [17]) as a starting point, which is concerned with finding

optimal portfolio and investment strategies for an investment company who received

continuous time stochastic cash inflows and pays continuously a stochastic cash out-

flows to its holder, in our research we are focused on finding the optimal portfolios

1



2 CHAPTER 1. INTRODUCTION

and investment strategies for an Investor who received continuous stochastic wage

income and pays continuously a stochastic cash outflow to its holder. The stochas-

tic wage income is invested into cash account, an inflation-linked bond and a stock.

Inflation-linked bonds are fixed income securities whose principal value is periodically

adjusted according to the rate of inflation. According to (Nkeki [17]), inflation linked

bonds are generally less risky than stocks, as they attract interest at a predetermined

rate and have guaranteed returns. These inflation-linked bonds can be used to hedge

inflation risk. (Nkeki [17]) went on and said, inflation risk is of increase and due to

this increase in inflation risk in nations economy, investment companies have started

investing optimally, the inflows paid by the holders into inflation linked bonds. In

our research, the stochastic income will be invested in inflation linked bonds.

In related literature, (Nkeki [16]) studied an optimal portfolio strategy problem with

discounted stochastic cash inflows. The analytical solution of the resulting HJB equa-

tion was found. Also, they found out that the smaller the level of risk the investor is

willing to take, the higher the expected value of wealth, and vice versa. In addition

to these findings, the optimal portfolio values in stock, inflation linked bond and cash

account were obtained. Lastly, the resulting optimal portfolio values in stock and

inflation-linked bond were found to involve intertemporal hedging terms that offset

any shock to the stochastic cash inflows.
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(Wu [26]) derived the analytical expression of the optimal investment strategy un-

der inflation.Further, (Wu [26]) found out how risk aversion, correlation coefficient

between inflation and the stock price, the inflation parameters and the coefficient

of utility affect the optimal investment and consumption strategy. In our work, we

consider the risk aversion tool as our power utility function.

Nkeki [15]) considered the mean-variance portfolio selection problem with inflation

hedging strategy for a defined contributory pension scheme. The optimal wealth

involving a cash account and two risky assets of the pension plan member (PPM)

were established. Also, efficient frontier for three asset classes which gives the PPM

the opportunity to decide his or her own risk and wealth were obtained. Finally, it

was found out that the inflation-linked bond is suitable for hedging inflation risks in

an investment portfolio. (Battocchio [1]) studied a stochastic model for a defined-

contribution pension fund in continuous time. The closed form solution for the set

allocation problem was found and the behaviour of the optimal portfolio with respect

to salary and inflation were analyzed in detail. In this research, we assume that the

underlying assets, stochastic wage income and cash outflows are driven by a geometric

Brownian motion.



4 CHAPTER 1. INTRODUCTION

1.0.1 Overview of Dissertation

The next sections of this dissertation will be discussed as follows: Chapter 2 will

be the literature review on portfolio theory and preliminary concepts, and Chapter

3 will be the preliminary concepts. This will be followed by, Chapter 4 which will

be stochastic control theory, then Chapter 5 will be the model and optimal portfolio

strategies. Chapter 6 will be discussion and analysis of the results.

1.0.2 Objectives

We would like:

1. To calculate the discounted stochastic wage income process and discounted cash

outflows process.

2. To find the value of the wealth process of the Investor at time t.

3. To find the optimal portfolio strategies for the Investor.



Chapter 2

Literature Review

2.1 Portfolio Theory

One of the key issues facing an individual is how to allocate wealth among alterna-

tive assets. Almost all financial institutions have the same problem with the added

complication that they need to explicitly include the characteristics of their liabilities

in the analysis. While the structure of these problems varies some what, they are

similar enough that we classify both as portfolio theory (Elton et al [5]).

Mathematics, more specifically the Stochastic Differential Equations are greatly utilised

in the calculation of how to allocate these assets.

Consider a consumer with a given amount of income. Such a consumer typically faces

two important economic decisions. First, how to allocate his or her current consump-

5



6 CHAPTER 2. LITERATURE REVIEW

tion among goods and services. Second, how to invest among various assets. These

two interrelated consumer household problems are known as the consumer-saving de-

cision and the portfolio selection decision (Constantinides et al [3]).

In financial markets, there are basic risks for investors, one of the most basic risks is,

the erosion of real return of the portfolio by inflation (Yu et al[11]).

The whole idea underlying portfolio optimisation is totally natural. One has got a

certain amount of money and tries to use it in such a way that one can draw the max-

imum possible utility from the results of the corresponding activities. This principle

covers nearly every situation of daily life. Imagine that you are thinking of buying a

house and are offered two different ones you can afford. One close to your office with

public transport connections, but without a garden and close to a crowded motor

way, the other one with a beautiful landscape but requiring you to commute a long

distance to work everyday. The decision is about which is more convenient for you is

in principle a portfolio problem (Korn [9])

A good portfolio is more than a long list of good stocks and bonds. It is a balanced

whole, providing the investor with protections and opportunities with respect to a

wide range of contingencies. The investor should build toward an integrated portfolio

which best suits his needs.



2.1. PORTFOLIO THEORY 7

A portfolio Analysis starts with information concerning individual securities. It ends

with conclusions concerning portfolios as a whole. The purpose of the analysis is to

find portfolios which best meet the objectives of the investor.

Various types of information concerning securities can be used as the raw material of

a portfolio analysis. One source of information is the past performance of individual

securities. A second source of information is the belief of one or more security analysts

concerning future performances.

When past performances of securities are use as inputs, the outputs of the analysts

are portfolios which performed well in the past. When beliefs of security analysis are

used as inputs, the outputs of the analysis are the implications of these beliefs for

better and worse portfolios (Markowitz [12]).

Some investors invest money in the financial market. Examples of such investors

are banks, investment funds and insurance companies. Because these are serious

investors, they always consider the risk involved even though they want to make as

much money as possible. Normally, an investor is to a certain degree risk averse. For

example, because of their obligations towards their customers, a traditional bank or

an insurance company which invest funds on behalf of their customers in the financial

market cannot allow themselves to take too much risk. The aim of such investors is to

maximise the expected returns on their investments while at the same time limiting

the risk involved. The theory of stochastic control and the maximisation of expected

utility can be used to model such behaviour.
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2.2 Utility Functions

A Utility Function is a mapping from the set of consumption choices into the real

numbers. Simply, utility functions are a way of measuring an investors preferences for

wealth and the amount of risks they are willing to undertake in the hope of attaining

greater wealth. Utility functions can either be in Multiperiod Discrete-Time models

or in Continous-Time Models.

The utility function expresses the preferences of economic entities with respect to

perceived risk and expected return. Outcomes are transacted into numbers by the

use of utility functions such that the expected value of the utility numbers can be

used to calculate certainty equivalents for alternatives in such a way that is consistent

with decision makers attitude towards risk-taking. The certainty equivalent for any

gamble or alternative is the certain amount of money which gives the consumer exactly

the same utility as the gamble/alternative. The risk premium of any gamble or

alternative is the difference between the exected value of gamble/alternative and its

certain equivalent, that is

Risk Premium = E(g)− C

where

g = gamble
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and

C = Certainty Equivalent.

The certain equivalent C, for an investment whose outcome is given by a random

variable X is:

C = U−1 × E[U(X)]

which implies that

U(C) = E[U(X)]

(Cvitanić [4])

According to (Cvitanić [4]), utility functions U(x) are such that

(i) U is strictly increasing. Therefore, maximising utility is equivalent to maximis-

ing the certainty equivalent.

(ii) U is twice differentiable.

(ii) U is concave. In particular,

U ′′ ≤ 0

The certainty equivalent is always less than expected value of investment. In addi-

tion, utility functions are twice differentiable functions of wealth U(w), [w > 0], such

that U is non-satiation (first derivative [U ′ > 0]) and risk aversion (second derivative

[U ′′ ≤ 0] ). The value of an investment can be measured by the expected value of the

utility of its consequence, and the largest expected utility is most preferable (Cvitanić
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[4]).

In many investments, the consequences correspond to the investor receiving a certain

amount of money. Let U(x) be the investors utility of receiving amount x. U(X) is

therefore a utility function. If an investor must choose between two investments, of

which the first returns an amount x and the second an amount y,then the investor

should choose the first if

[E[U(x)] > E[U(y)]]

and the second if the inequality is reversed, where U is the utility function of that

investor.

Definition 2.2.1. Marginal Utility is the additional satisfaction a consumer gains

from consuming one or more unit of a good or service. This concept is very important

because it is used to determine how much of an item a consumer will buy. There are

several types of marginal utility. Below are some of them:

• Positive marginal utility is when the consumption of an additional item increases

the total utility.

• Negative marginal utility is when the consumption of an additional item de-

creases the total utility.

• Zero marginal utility is when the consumption of an additional item does not
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change the total utility.
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2.2.1 Risk Preferences

Different Investors have different preferences for risk.

• Risk Averse has diminishing marginal utility of wealth.

• Risk Neutral has constant marginal utility of wealth.

• Risk Lover has increasing marginal utility of wealth.

The value of an investment can be measured by the expected value of the utility

function of its consequence, and the investment with the largest expected utility is

most preferable.

Let U(x) be the utility function(the investors utility of receiving the amount x).

Therefore,if an investor must choose between two investments, of which the first

returns an amount X and the second an amount Y , then the investor should choose

the first if

E[U(X)] > E[U(Y )]

and the second if the inequality is reversed.

An investor’s utility function is specific to that investor. Also, a general property

usually assumed of utility functions is that U(x) is a non-decreasing function of x. A

common feature for most investors is that, if they expect to receive x, then the extra

utility gained if they are given an additional amount ∆ is non-increasing in x, that
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is, for fixed ∆ > 0, their utility function satisfies

U(x+ ∆)− U(x)

is non-increasing in X. A utility function that satisfies this condition is called con-

cave. Also, it can be shown that the condition of concavity is equivalent to U”(x) ≤ 0.

This simply means that, a function is concave if and only if its second derivative is

non-positive(Ross [21]).

2.2.2 Risk Averse Investor

Definition 2.2.2. A Risk-averse Investor is an investor with a concave utility func-

tion. Jensen’s inequality is the one that gives such a investor the name risk-averse

investor. Jensen’s inequality states that if u is a concave function, then for any

random variable X,

E[U(X)] ≤ U(E[X])

. By Jensen’s inequality and letting X be the return from an investment, any investor

with a concave utility function would prefer the certain return of E[X] to receiving a

random return with this mean (Ross [21]).

The above inequality simply means that; the investor prefers the certain average

amount E(X) to the random amount X. The utility function for a risk averse in-

dividual must be concave (from below) such that the chord lies below the utility
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function (Cvitanić [4]).

Another utility function that is commonly used is the log utility function

U(X) = log(X).

log(X) is a concave function, therefore, an investor with a log utility function is risk-

averse. In a variety of situations an investor with an infinite sequence of investments

can maximize long-term rate of return by adopting a log utility function and then

maximizing the expected utility in each period. This can be proven mathematically.

This makes the log utility function very important (Ross [21]).

2.2.3 Other Examples of Utility Functions

• Logarithmic Utility:

U(x) = log(x)

• Power Utility :

U(x) =
xγ

γ
, γ ≤ 1

• Exponential Utility:

U(x) = 1− exp(−αx)

• Quadratic Utility:

U(x) = x− βx2
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(Cvitanić [4])

In our dissertation, we choose the power utility function with the parameter γ as the

risk-aversion parameter.
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Chapter 3

Preliminary Concepts

3.1 Introduction

In this chapter, we define the preliminary concepts thats will be used. This includes

their definitions and some examples.

3.1.1 Sample Space

Definition 3.1.1. A sample space is the set of all possible outcomes of an experiment.

Example 3.1.1. If a die is thrown once, the sample space is Ω = {1, 2, 3, 4, 5, 6}.

This means that each time the die is thrown, a 1,2,3,4,5 or 6 can be obtained.

The results of a random experiment are modelled by this set, where each point of Ω

17



18 CHAPTER 3. PRELIMINARY CONCEPTS

corresponds to all possible outcome.

Example 3.1.2. If we throw pair of dice, the sample space could consist of the 36

ordered pairs (a,b) where a and b take values from 1 to 6 (Promislow [20]).

3.1.2 σ - algebra

Definition 3.1.2. Let Ω be a given set. Then a σ - algebra, F , (also known as a

σ-field) on a Ω is a family F of subsets of Ω with the following properties:

(i) ∅ ∈ F .

(ii) F ∈ F =⇒ F c ∈ F , where F c = Ω\F is the complement of F in Ω.

(iii) A1, A2, ..... ∈ F =⇒ A :=
⋃∞
i=0Ai ∈ F .

Example 3.1.3. Let Ω = {1, 2, 3} and F = {{1, 2}, {3, }, {1, 2, 3}} be a family of

subsets. Then:

(i) ∅ ∈ F as ∅ is in any set.

(ii) Now to prove the second property of σ - algebra, we pick each element in F

and see if its complement is also in F ; {1, 2} ∈ F , then {1, 2}c = {3} ∈ F ,

{3} ∈ F then {3}c = {1, 2} ∈ F and ∅ ∈ F then ∅c = {1, 2, 3} ∈ F , and also,

{1, 2, 3} ∈ F then {1, 2, 3}c = ∅ ∈ F .
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(iii) Finally, to prove the third property of σ - algebra: If {1, 2}, {3}, {1, 2, 3} ∈

F =⇒ {1, 2}
⋃
{3}

⋃
{1, 2, 3} = {1, 2, 3} ∈ F .

The above shows that all the conditions of σ - algebra are satisfied, hence F is a σ -

algebra.

In a market situation, the σ- algebra Ft models the information that is revealed to

an investor at time t.

3.1.3 Measurable Space

Definition 3.1.3. A measurable space is a pair (Ω,F) where Ω is a sample space

and F is a σ - algebra defined on (Ω,F).

3.1.4 Event

An event is a combination of outcomes. This is represented by a subset of Ω. Such

an event occurs if any of the outcomes in the subset occur (Promislow[20]).

Example 3.1.4. In an experiment of tossing a pair of die, Ω = {1, 2, 3, 4, 5, 6},

A = {3, 2} . A is an event, meaning that it is possible to obtain a 3 and a 2 at the

same time by tossing the pair of die.
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3.1.5 Probability

Definition 3.1.4. Probability measure: A probability measure P on a measurable

space (Ω,F) is a function P : F −→ [0, 1] such that:

(a) P(∅) = 0, P(Ω) = 1

(b) if A1, A2...... ∈ F and Ai is disjoint, that is, Ai

∞⋂
i=1

Aj = ∅ if i 6= j, then

P(
∞⋃
i=1

Ai) =
∞∑
i=1

P(Ai).

From the definition, a probability is a function or a map with the domain σ-algebra,

the codomain R and the range [0, 1].

3.1.6 Probability Space

Definition 3.1.5. A probability space is a 3-tuple, (Ω,F ,P) where Ω is a sample

space, F is a σ-algebra defined on Ω and P is a probability measure defined on F .

3.1.7 Filtration

Definition 3.1.6. Let (Ω,F ,P) be a probability space. A filtration on (Ω,F ,P) is

an increasing family (Ft)t≥0 of sub-σ - algebras of F .

In other words, for each t, (Ft)t ≥ 0 is a σ - algebra included in (Ft) and if s ≤ t,
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(Fs) ⊂ (Ft). A probability space (Ω,F ,P) endowed with a filtration (Ft)t≥0 is called

a filtered probability space.

Further, A filtration represents an increasing stream of information. In a market,

share prices, exchange rates, interest rates e.t.c can be modelled by solutions of

stochastic differential equations which are driven by Brownian motion. These so-

lutions are then functions of Brownian motion. The fluctuations of these processes

actually represent the information about the market. This relevant knowledge is con-

tained in the natural filtration (Mikosch [13]).

In our case, the filtration model will be used to model the information that is revealed

to an investor. In a market situation, the increasing nature of σ - algebra shows that

information is never forgotten. The information we have time t is the sum of the

accumulation of information from t.

3.1.8 Random Variable

Definition 3.1.7. A Random variable is a function that associates a real number

with each element in the sample space. That is, X : Ω→ R. We usually use capital

letters to denote a random variable and the corresponding small letter to denote a

value of the random variable.
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Example 3.1.5. Tossing two dice.

Ω = {(i, j) : i, j = 1, 2, ....6}

. There are several random variables that can be defined, for example,

X = i+ j, Y = |i− j|

Both X and Y are random variables. X can take values 2, 3, ......, 12 and Y can take

values 0, 1, ..., 5.

Basically, a random variable is a function that maps outcomes to real numbers.

Types of Random variables

There are two types of random variables. The discrete random variable and the

continuous random variable.

The discrete random variable represents distinct values, for example, X = 0, 1, 2, .....,

while the continuous random variable represents continuous values, for example,

X > 3, which could be used in Height of plant, Time e.t.c.

3.1.9 Expectation

Definition 3.1.8. The expectation (also known as the mean) of a random variable

X, represents in some sense the average value that X will take.
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For a discrete random variable, let X = {1, 2, ....., k}, where Xk = k and

P(X = k) = f(k). Then:

E(X) = Σ∞k=1kf(k),

While for a continuous random variable

E(X) =

∫ ∞
0

xf(x)dx.

If g is a function defined on a set that includes the range of X, we can define another

random variable g(X) that takes value g(x) when X takes the value x. The expecta-

tion of this random variable is given by:

E[g(X)] =
∞∑
k=0

g(k)f(k)

OR

E[g(X)] =

∫ ∞
0

g(x)f(x)dx

depending on whether X is discrete or continuous.

Of particular importance are the functions g(x) = xn. For such a function E[g(x)] is

known as the nth moment of X.
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Definition 3.1.9. The variance of X is defined by:

V ar(X) = E[X − E(X)]2

= E(X2)− E(X)2

The square-root of V ar(X) is known as the standard deviation of X.

The smaller the variance, the more likely it is that values of X are close to the mean.

A formal statement along these lines is given by Chebyshev’s inequality, which states

that for k > 0,

P(‖ X − E ‖≥ k) ≤ V ar(X)

k2

(Promslow[20])

According to (Øksendal [18]), let (Ω,F ,P) denote a given complete probability space.

Let X be a random variable that is an F -measurable function X : Ω→ Rn.

If
∫

Ω
|X(ω)|dP (ω) <∞, then the number:

E[X] : =

∫
Ω

X(ω)dP (ω)
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=

∫
Rn
xdµX(x)

is called the expectation of X (w.r.t P).

3.1.10 Stochastic Process

Definition 3.1.10. A stochastic process is a family (Xt) of real valued random vari-

ables indexed by time. It is continuous if t → Xt(w) is continuous almost surely. A

stochastic process (Xt) is adapted to the filtration (Ft) if for every s ∈ [0, T ], the

random variable Xs is Ft measurable.

3.1.11 Standard Brownian Motion

Brownian motion is one of the stochastic process which is used to model noise in a

market.

The dominion of financial asset pricing borrows a great deal from the field of stochas-

tic calculus. The price of a stock tends to follow a Brownian motion ([22]). The

mathematical foundation for Brownian motion as a stochastic process was done by

N. Wiener in 1931, and this process is also called the Wiener Process. The Brow-

nian motion process W (t) serves as a Basic model for the cumulative effect of pure

noise(klebaner [8]).
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Definition 3.1.11. A standard Brownian motion (or standard Wiener process) is a

stochastic process W = {Wt}t≥0 , i.e. a collection of random variables Wt defined on

the same probability space (Ω,F ,P) , satisfying the following conditions:

1. W0 = 0,

2. with probability one, the function Wt is continuous in t,

3. W has stationery and independent increments, i.e. for any positive integer n

and any 0 = t0 < t1 < .... < tn , the random variables Wt −Wti−1 , i = 1, ..., n

are mutually independent , and Ws+t −Ws has the same distribution as Wt for

any s, t > 0.

4. Wt ∼ N(0, T )

In this dissertation, Brownian motion will be used as a model for stock price be-

haviour.

Proposition 3.1.1. If Y and Z are stochastic variables, and Z is Ft-measurable,

then:
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E[Z.Y |Ft] = Z.E[Y |Ft]

In the expected value E[Z.Y |Ft], we condition upon all information available at time

t. If now Z ∈ Ft, this means that, given the information Ft, we know exactly the

value of Z, so in the conditional expectation Z can be treated as a constant, and thus

it can be taken outside the expectation (Bjork [2]).

Proposition 3.1.2. If Y is a stochastic variable, and if s < t, then

E[E[Y |Ft]|Fs] = E[Y |Fs]

This result is called the ”law of iterated expectation”, and it is basically a version of

the law of total probability (Bjork [2]).

3.1.12 Geometric Brownian Motion

Definition 3.1.12. A non-negative variation of Brownian Motion called geometric

Brownian Motion S(t) is defined by

S(t) = s0 exp
(
X(t))

where

X(t) = σW (t) + µt

is Brownian Motion with drift and

S(0) = s0 > 0

is the initial value. Geometric brownian motion is used for modelling stock prices.
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3.1.13 Market

Definition 3.1.13. A market is an F (m)
t -adapted (n+ 1) -dimensional Itô process

X(t) = (X0(t), X1(t), ...., Xn(t)); 0 ≤ t ≤ T

whose dynamics is represented by a system of differential equations.

dX0(t) = ρ(t, ω)X0(t)dt; X0(0) = 1 (3.1)

dXi(t) = µi(t, ω)dt+ Σσi,j(t, ω)dWj(t)

= µi(t, ω)dt+ σi(t, ω)dW (t); Xi(0) = xi

where σi is row number i of the n×m matrix [σi,j]; 1 ≤ i ≤ n ∈ N.

Furthermore, the market X(t) ∈ [0, T ] is called normalized if X0(t) = 1

(Øksendal [18]).

Basically, Xi(t) = Xi(t, ω) is taken as the price of security/asset number i at time

t. The assets number 1, ..., n are called risky because of their diffusion terms. For

example, they can represent stock investment.

Asset number 0 is called safe because of the absence of the diffusion term, for example,

Bank account. Assume ρ(t, ω) is bounded for simplicity.
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Normalised Market

Definition 3.1.14. X(t) = (1, X1(t), ......, Xn(t)) is the normalization of X(t) and is

simply derived by dividing each of the assets by the price of the safe investment

Portfolio

Definition 3.1.15. A portfolio in the market X(t)t∈[0,T ] is an (n + 1) dimensional

(t, ω) -measurable and F (m)
t -adapted stochastic process θ(t, ω) = (θ0(t, ω), θ1(t, ω), ........, θn(t, ω));

0 ≤ t ≤ T . A time t of a portfolio θ(t), the value at this time is defined as

V (t, ω) = V θ(t, ω) = θ(t) ·X(t) =
∑

θi(t)Xi(t)

where · denotes the inner product Rn+1.

Basically, a portfolio is a particular combination of assets in question. To form a

portfolio one needs to know the positions taken in each asset under consideration.

The symbol θi represents the commitment with respect to the ith assets. Specifying

all θi; i = 1, ...., N specifies the portfolio.

A positive θi implies a long position in that asset, while a negative θi implies a short

position. If an asset is not included in the portfolio, the corresponding θi is zero. If a

portfolio delivers the same pay-off in all states of the world, then its value is known

exactly and the portfolio is risk less (Neftci [14]).
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Self-financing Portfolio

Definition 3.1.16. The portfolio θ(t) is called self-financing if

∫ T

0

[
|θ0(s)ρ(s)X0(s) + Σn

i=1θi(s)µi(s)|+ Σm
j=1[Σn

i=1θi(s)σi,j(s)]
2

]
ds <∞ a.s.

and

dV (t) = θ(t).dX(t)

.

That is,

V (t) = V (0) +

∫ t

0

θ(s).dX(s) for t ∈ [0, T ]

(Øksendal [18])

Definition 3.1.17. A portfolio θ(t) which is self-financing is called admissible if the

corresponding value process V θ(t) is (t, ω) a.s. lower bounded, that is,, there exists

K = K(θ) <∞ such that:

V θ(t, ω) ≥ −K for a.a. (t, ω) ∈ [0, T ]× Ω (3.2)

This restriction (3.2) reflects a natural condition in real life finance. There must be

a limit to how much debt the creditors can tolerate. ([18])

Definition 3.1.18. An admissible portfolio θ(t) is called arbitrage in the market

Xtt∈[0,T ] if the corresponding value process V θ(t) satisfies
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V θ(0) = 0 and V θ(T ) ≥ 0 a.s. (3.3)

and P[V θ(T ) > 0] > 0. (3.4)

(Øksendal [18])

3.1.14 Martingales

Martingales are one of the central tools in the modern theory of finance. Martingale

theory classifies observed time series according to the way they ”trend”. A stochastic

process behaves like a martingale if its trajectories display no discernible trends or

periodicities (Neftci [14]).

Continous-time Martingales

Definition 3.1.19. Let Mt be a filtration.

An n-dimensional stochastic process (Mt)t≥0 on (Ω,F ,P) is called a martingale with

respect to a filtration (Mt)t≥0 (and with respect to P) if:

(i) Mt is Mt-measurable for all t.
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(ii) E[|Mt |] <∞ for all t.

(iii) E[Ms|Mt] = Mt for all s ≥ t.

The expectation in (ii) and the conditional expectation in (iii) are taken with respect

to P = P0 (Øksendal[18])

According to (Neftci [14]), property (iii) above implies that the best forecast of un-

observed future values is the last observation on Mt.

Martingales are stochastic processes whose dynamics are completely unpredictable.

The best forecast for the value of the process at time s given information at time t is

the value of the process at time t.

(Neftci [14]) further went on to say that, martingales are random variables whose

future variations are completely unpredictable given the current information set.

The best forecast of the change in Mt over an arbitrary interval t > 0 is zero. In

other words, the directions of the future movements in martingales are impossible to

forecast. This is the fundamental characteristics of processes that behave as martin-

gales. If the trajectories of a process display clearly recognizable long-or short run
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”trends”, then the process is not a martingale.

It is also important to take note that a martingale is always defined with respect to

some information set, and with respect to some probability measure. If we change the

information content and /or the probabilities associated with the process, the process

under consideration may cease to be a martingale. The opposite is also true. Given

a process Xt which does not behave like a martingale , we may be able to modify the

relevant probability measure P and convert Xt into a martingale (Neftci [14]).

This property is very important in finance and in our project. Stock price processes

are not martingale since on average they are increasing in nature. But when pricing

using a martingale approach, it is required that the process is a martingale. This is

achieved by changing the probability measure. In other words, we find an equivalent

probability such that the process becomes a martingale.

According to the definition of the martingale, a process Xt is a martingale if its future

movements are completely unpredictable given a family of information sets. Now, we

know that stock prices or bond prices are not completely unpredictable. The price

of a discount bond is expected to increase over time. In general, the same is true for

stock prices. They are expected to increase on the average (Neftci [14]).
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Equivalent Martingale Measure

Definition 3.1.20. Let (Ω,F , (F)n≥1,P) be a filtered probability space. Then we

say that a measure P̃ in (Ω,F), is absolutely continous with respect to P (we write

P̃� P if P̃(A) = 0 for each A ∈ F such that P(A) = 0).

Definition 3.1.21. The measures P and P̃ in the same measurable space (Ω,F) are

equivalent (we write P̃ ∼ P) if P̃� P and P� P̃.

Let P̃� P. Then P̃n � Pn for each n ∈ N and there exist Radon-Nikodyn derivatives

denoted by

dP̃n
dPn

or
dP̃n
dPn

(ω)

and defined as Fn-measurable functions Zn = Zn(ω) such that

P̃n(A) =

∫
A

Zn(ω)Pn(dω), A ∈ Fn.

(Shiryaev [23])

3.1.15 Itô Integral for elementary functions

Definition 3.1.22. Let V = V(S, T ) be the class of functions

f(t, ω) : [0,∞)× Ω =⇒ R such that:

(i) (t, ω) −→ f(t, ω) is B × F -measurable, where B denotes the Borel σ - algebra

on [0,∞).
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(ii) f(t, ω) is Ft adapted.

(iii) E[

∫ T

S

f(t, ω)2dt] <∞

For functions f ∈ V we will now define the Itô integral

I[f ](ω) =
∫ T
S
f(t, ω)dWt(ω), where Wt is 1-dimensional Brownian motion.

Definition 3.1.23. A function φ ∈ V is defined as elementary if it has the form

φ(t, ω) = Σjej(ω).χtj ,tj+1
(t)

where χ denotes the characteristic (indicator) function where φ ∈ V and φ is an ele-

mentary function, ej are constants, j ∈ N.

Since φ ∈ V each function ej must be Ftj -measurable.

.

The Itô integral

∫ T

S

f(t, ω)dWt(ω) where (f ∈ V , Wt is a 1-dimensional Brownian

Motion), can be defined as

∫ T

S

φ(t, ω)dWt(ω) = Σj≥0ej(ω)[Wtj+1
−Wtj ](ω)



36 CHAPTER 3. PRELIMINARY CONCEPTS

The Itô Isometry

Definition 3.1.24. If φ(t, ω) is bounded and elementary, then:

E
[
(

∫ T

S

φ(t, ω)dWt(ω))2

]
= E

[ ∫ T

S

φ(t, ω)2dt

]
(3.5)

Proof. Refer to (Øksendal [18]).

Itô Integral for functions in V .

The isometry (3.5) was used to extend the definition of Itô integral from elementary

functions in V .

Definition 3.1.25. (The Itô Integral)

Let f ∈ V(S, T ). Then the Itô integral of f (from S to T) is defined by

∫ T

S

f(t, ω)dWt(ω) = lim
n→∞

∫ T

S

φn(t, ω)dWt(ω) (limit in L2(P ))

where φn is a sequence of elementary function such that

E
[ ∫ T

S

(f(t, ω)− φn(t, ω))2dt

]
→ 0 as n→∞

Corollary 3.1.26. (The Itô Isometry)
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E
[
(

∫ T

S

f(t, ω)dWt)
2

]
= E

[ ∫ T

S

f 2(t, ω)dt

]
for all f ∈ ν(S, T )

(Øksendal [18])

Theorem 3.1.27. Let f, g ∈ V(0, T ) and let 0 ≤ S < U < T . Then:

(i)

∫ T

S

=

∫ U

S

fdWt +

∫ T

U

for almost all ω.

(ii)

∫ T

S

(cf + g)dWt = c

∫ T

S

fdWt +

∫ T

S

gdWt for almost all ω, where c is a constant.

(iii) E[

∫ T

S

fdWt] = 0

(iv)

∫ T

S

fdWt is FT -measurable.

Proof. (Refer to Øksendal [18])

An important property of the Itô integral is that it is a martingale.
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3.1.16 Itô Formula

The basic definition of Itô integrals is not very useful when we try to evaluate a given

integral. But, it is possible to establish an Itô integral version of the chain rule, known

as, the Itô Formula.

We introduce Itô process (also called stochastic integrals) in order to make the fam-

ily of integrals that are combination of the dBs-integral and ds-integral stable under

smooth maps.

Definition 3.1.28. (1-dimensional Itô Process).

Let Wt be the 1−dimensional Brownian motion on (Ω,F ,P). A (1−dimensional) Itô

process(or stochastic integral) is a stochastic process Xt on (Ω,F ,P) of the form:

Xt = X0 +

∫ t

0

u(s, ω)ds+

∫ t

0

υ(s, ω)dWs (3.6)

WH(S, T ) denotes the class of process f(t, ω) ∈ R satisfying:

(i) f(t, ω) : [0,∞)× Ω→ R such that (t, ω)→ f(t, ω) is B×F -measurable. where

B denotes the Borel σ–algebra on [0,∞).
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(ii) There exists an increasingly family of σ-algebras Ht; t ≥ 0 such that :

(a) Bt is a martingale with respect to Ht,

(b)ft is Ht-adapted.

(iii) P[
∫ T
S
f(s, ω)2ds <∞] = 1,

where υ ∈ WH , so that

P[

∫ t

0

υ(s, ω)2ds <∞ for all t ≥ 0] = 1

We also assume that U is Ht-adapted and;

P[

∫ t

0

| U(s, ω) | ds <∞ for all t ≥ 0] = 1

If Xt is an Itô process of the form (3.6), then (3.6) is sometimes written in the shorter

differential form

dXt = udt+ υdWt

Theorem 3.1.29. (The 1−dimensional Itô formula)

Let Xt be an Itô process given by:

dXt = udt+ υdWt. (3.7)
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Let g(t, x) ∈ C2([0,∞)× R), (g is twice continuously differentiable on [0,∞)× R).

Then,

Yt = g(t,Xt) is again an Itô process, and ;

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2

where

(dXt)
2 = (dXt)(dXt) (3.8)

is compared according to the rules

dt.dt = dt, dWt = dWt.dt = 0; dWt.dWt = dt

(Øksendal [18])

Example 3.1.6. Take the integral

I =

∫ t

0

WsdWs

Assume

W0 = 0
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Let Xt = Wt and g(t, x) = 1
2
x2.

Then,by Itôs formula,

dYt =
∂g

∂t
dt+

∂g

∂x
dWt

+
1

2

∂2g

∂x2
(dWt)

2

= 0.t+WtdWt +
1

2
(1)(dWt)

2

= WtdWt +
1

2
dt

Hence:

d(
1

2
W 2
t ) = WtdWt +

1

2
dt∫ t

0

d(
1

2
dW 2

s ) =

∫ t

0

WsdWs +

∫ t

0

1

2
ds

1

2
W 2
s |t0 =

∫ t

0

WsdWs +
1

2
s |t0

1

2
W 2
t −

1

2
W 2

0 =

∫ t

0

WsdWs +
1

2
s− 1

2
(0)

1

2
W 2
t =

∫ t

0

WsdWs +
1

2
s

(Øksendal [18])

Theorem 3.1.30. (The Itô Representation Theorem)
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Let F ∈ L2(F (n)
T ,P). Then, there exists n a unique stochastic process f(t, ω) ∈ V(0, T )

such that

F (ω) = E[F ] +

∫ T

0

f(t, ω)dW(t)

Proof. Refer to (Øksendal [18]).

3.1.17 The Brownian Martingale Representation Theorem

Definition 3.1.31. A (P, {Ft}t≥0)-martingale {Mt}t≥0 is said to be square-integrable

if

E[|Mt|2] <∞

for each t > 0.

Theorem 3.1.32. Brownian Martingale Representation Theorem.

Let {Ft}t≥0 denote the natural filtration of the P-Brownian motion {B(t)}t≥0. Let

{Mt}t≥0 be a square integrable (P, {Ft}t≥0)-martingale. Then there exists an {Ft}t≥0-

predictable process {ut}t≥0 such that with P-probability one,

Mt = M0 +

∫ t

0

usdW (s).

(Etheridge [6])

Proof. Refer to (Etheridge [6]).
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3.1.18 The Girsanov Theorem

Theorem 3.1.33. Suppose that {W (t)}t≥0 is a P-Browian motion with natural fil-

tration {Ft}t≥0 and that {U(t)}t≥0 is an {Ft}t≥0-adapted process such that

E
[

exp
(1

2
U2(t)dt

)]
<∞.

Define

Mt = exp
(
−
∫ t

0

u(s)dW (s)− 1

2

∫ t

0

U2(s)ds
)

and let P(M) be the probability measure defined by

P(M)[Ω] =

∫
Ω

MtPd(ω)

. Then under the probability measure P(M), the process {B(M)(t)}0≤t≤T , defined by

W (M)(t) = Wt +

∫ t

0

U(s)ds

is a standard Brownian motion (Etheridge [6]).

3.1.19 Existence And Uniqueness Theorem For Stochastic

Differential Equations

Let T > 0 and

b(., .) : [0, T ]× Rn → Rn, σ(., .) : [0, T ]× Rn → Rn×m
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be measurable functions satisfying:

| b(t, x) | + | σ(t, x) |≤ C(1+ | x |);x ∈ Rn, t ∈ [0, T ] (3.9)

for some constant C, (where | σ |2=
∑
| σij |2) and such that;

| b(t, x)− b(t, y | + | σ(t, x)− σ(t, y) |< D | x− y |;x, y ∈ Rn, t ∈ [0, T ] (3.10)

for some constant D.

Let Z be a random variable which is independent of the σ-algebra F (m)
∞ generated by

Ws(.), s ≥ 0 and such that

E[| Z |2] <∞.

Then the stochastic differential equation

dXt = b(t, xt)dt+ σ(t, xt)dWt, 0 ≤ t ≤ T, x0 = Z

has a unique t-continuous solution Xt(ω) with the property that Xt(ω) is adapted to

the filtration Ft generated by Z and

Ws(.); s ≤ t

and

E[

∫ T

0

| Xt |2 dt] <∞.
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Proof. Refer to (Øksendal [18]).

3.1.20 Stochastic Differential Equations (SDEs)

Stochastic Differential Equations (SDEs)are widely used in Financial Modelling.

In applications, SDE is how we think about random process that evolve over time. For

instance, the return on a portfolio. The idea is not that various physical phenomena

are Brownian motion, but that they are driven by a Brownian motion.

Differential Equations are used to describe the evolution of a system. Stochastic Dif-

ferential Equations arise when a random noise is introduced into Ordinary Differential

Equations(ODEs).

Definition 3.1.34. If x(t) is a differential function defined for T ≥ 0, µ(x, t) is a

function of x, and t, and the following relation is satisfied for all t, 0 ≤ t ≤ T ;

dx(t)

dt
= x′(t) = µ(x(t), t) and x(0) = x0, (3.11)

then x(t) is a solution of the ODE with the linear condition x0 (Klebaner [8]). Usually

the requirement that x′(t) is continuous is added.
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White Noise and SDEs

The white noise process ξ(t) is formally defined as the derivative of the Brownian

motion;

dW (t)

dt
= W ′(t)

It does not exist as a function of t in the usual sense, since a Brownian motion is

nowhere differentiable.

If σ(t)(x, t) is the intensity of the noise at point x at time t, then it is agreed that;

∫ T

0

σ(x(t), t)ξ(t)dt =

∫ T

0

σ(x(t), t)W ′(t)dt =

∫ T

0

σ(x(t), t)dW (t), (3.12)

where the integral is Itô integral.

Stochastic Differential Equations arise, for example, when the coefficients of ordinary

differential equations are perturbed by White Noise.

Definition 3.1.35. Let W (t), t ≥ 0 be Brownian motion process. An equation of

the form:
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dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t),

where functions µ(x, t) and σ(x, t) are given X(t) is the unknown process, is called

a Stochastic Differential Equation (SDE) driven by Brownian motion. The functions

µ(x, t) and σ(x, t) are called the coefficients(Klebaner [8]).

3.2 Stochastic Control

Let the state of the system at time t be described by an Itô process Xt of the form

dXt = dXu
t = b(t,Xt, ut)dt+ σ(t,Xt, ut)dWt

where

Xt ∈ Rn, b : R× Rn × U → Rn, σ : R× Rn × U → Rn×m

and Wt is m-dimensional Brownian motion. ut ∈ U ⊂ Rk is a parameter whose value

is in the Borel set U at any instant t in order to control the process Xt. Therefore,

ut = u(t, ω) is a stochastic process ((Øksendal [18])).

Optimal Control

In general, an optimal control problem consists of the following elements:

• State Process Z(.): This process must capture of the minimal necessary infor-

mation needed to describe the problem. Z(t) ∈ Rd is influenced by the control

and given the control it has a Markovian structure.
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• Control Process ν(.): The control set, U, in which ν(t) takes values in for every

t needs to be described. In the stochastic setting, ν will be required to be

adapted to a certain filtration to model the flow of information.

• Admissible controls A: A control process satisfying the constraints is called an

admissible control. The set of all admissible controls will be denoted by A and

it may depend on the initial value of the state process.

• Objective functional J
(
Z(.), ν(.)): This is the functional to be maximized (or

minimized).

Then ,the aim is to minimize (or minimize) the objective functional J over all admis-

sible controls. The main problem in optimal control is to find the minimizing control.

A partial differential equation is satisfied by the value function ν. Also, the optimal

control in a ”feedback” form is obtained. That is, the optimal process ν∗(t) is given

as ν̂ (Z∗(t)), where ν̂ is the optimal feedback control given as a function of the state

and Z∗ is the corresponding optimal state process (Soner [24]).

3.3 Dynamic Programming Principle

The Dynamic Programming Principle(DPP) is a fundamental principle in the theory

of stochastic control (Pham [19]). The American scholar Berman et al put forward

dynamic programming in 1951 which provides an effective approach to such issue as

distribution of funds. The unique feature of dynamic programming is that it uses
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decision-making by stages in the multi-variable complex decision-making issue, and

changes it into a decision-making issue of solving several single variables (Yan [27]).

This principle provides a general framework for analyzing many problem types. A

variety of optimization techniques can be employed within this framework to solve

particular aspects of a more general formulation. Mostly, creativity is required before

we can recognize that a particular problem can be cast effectively as a dynamic pro-

gram, and often subtle insights are necessary to restructure the formulation so that

it can be solved effectively (Hajihassani [7]).

The concept of dynamic programming offers a unified approach to solving problems

of stochastic control. Central to the methodology is the cost-to-go function, which

can be obtained via solving Bellmann’s equation. The domain of the cost-to-go func-

tion is the state space of the system to be controlled, and dynamic programming

algorithms compute and store a table consisting of one cost-to-go value per state.

Unfortunately, the size of a state space typically grows exponentially in the number

of state variables. Known as the curse of dimensionality, this phenomenon renders dy-

namic programming untraceable in the face of problems of practical scale (Dietterich

etal [25]).

The framework of controlled diffusion may be considered and the problem will be

formulated on finite or infinite horizon. The basic idea of the approach is to consider

a family of controlled problems by varying the initial state values, and to derive
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some relations between the associated value functions. This approach yields a certain

partial differential equation(PDE), of second order and non-linear , called Hamilton-

Jacobi-Bellman(HJB). When this PDE can be solved by the explicit or theoretical

achievement of a smooth solution, the verification theorem validates the optimality of

the candidate solution to the HJB equation. This classical approach to the dynamic

programming is called the Verification step. The main drawback of this approach is

to suppose the existence of a regular solution to the HJB equation (Pham [19]).

The Hamilton Jacobi Bellman Euation (HJB) provides the globally optimal solution

to large classes of control problems. Unfortunately, This generally comes out at a

price, the calculation of such solutions is typically intractible for systems with more

than moderate state space size due to the cause of dimensionality (Horowitz etal [10]).



Chapter 4

The Model

4.1 Introduction

With our solid base on the preliminary concepts which are discussed in the previous

chapters, we now focus on the model.

The project is focused on finding the optimal investment under inflation protection

and also to find out the optimal portfolio under stochastic wage income and stochastic

cash outflows.

We will start by giving the general description of the model, and we will also discuss

the dynamics of the relevant features which will be considered and these include; the

dynamics of the wealth process, the discounted stochastic wage income process, the

51
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discounted cash outflows process, the wealth valuation of the Investor, and finally the

optimal portfolio strategies for the Investor.

4.2 Problem Formulation

Let (Ω,F ,P) be a probability space with filtration F = (F(t))0≤t≤T , where

Ft = σ(W I(t),W S(t),Ww(t) : s ≤ t), the brownian motionsW (t) = (W I(t),W S(t),Ww(t))′

is a 3-dimensional process, defined on a given filtered probability space (Ω,F ,F(F),P),

t ∈ [0, T ], where P is the real world probability measure, t the time period, T is the

terminal time period.

W I(t) is the Brownian motion with respect to the source of uncertainty arising from

inflation and W S(t) is the Brownian motion with respect to the source of uncertainty

arising from stock market. σS = (σS1 , σ
S
2 ) and σI = (σI , 0) are the volatility vector

of stock and volatility vector of the inflation-linked bond with respect to changes

in W S(t) and W I(t). Ww(t) is a standard Brownian motion independent of W S(t)

and W I(t). µ is the appreciation rate of stock. Moreover, σS and σI referred to as

the co-officiants of the market and are progressively measurable with respect to the

filtration F .

We assume that the Investor faces a market that is characterized by a risk-free as-

set(cash account) and two risky assets, all of whom are tradeable. In this work, we
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allow the stock price to be correlated to inflation. Also, we correlated the cash out-

flows to stock market in order to determine the extent to which the cash outflows

should be hedged. The dynamics of the underlying assets are given by (4.1):

dC(t) = rC(t)dt

C(0) = 1

dS(t) = µS(t)dt+ σS1 S(t)dW I(t) + σS2 S(t)dW S(t)

S(0) = so > 0 (4.1)

dB(t, Q(t)) = (r + σIθ
I)B(t, Q(t))dt+ σIB(t, Q(t))dW I(t)

B(0) = b > 0

where , r is the nominal interest rate,

θI is the price of inflation risk,

C(t) is the price process of the cash account at time t,

S(t) is stock price process at time t,

Q(t) is the inflation index at time t and has the dynamics

dQ(t) = E(q)Q(t)dt+ σIQ(t)dW I(t)

where E(q) is the expected rate of inflation, which is the difference between nominal

interest rate, r and real interest rate R (i.e. E(q) = r −R).
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B(t, Q(t)) is the inflation-indexed bond price process at time t.

Then, the volatility matrix:

Σ =

σI
σS

 =

σI 0

σS1 σS2

 ,

corresponding to the two risky assets and satisfies det(
∑

) = σIσ
S
2 6= 0. Therefore,

the market is complete and there exists a unique market price θ satisfying;

θ =

θI
θS

 =

 θI

µ− r − σS1 θI

σS2


where θS is the market price of stock risks and θI is the market price of inflation

risks(MPIR).

θ was calculated as follows ,

Σ.θ = Υ,

where:
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Σ =

σI
σS

 =

σI 0

σS1 σS2

 ,

θ =

θI
θS


and

Υ =

 σIθ
I

µ− r


Therefore,

σI 0

σS1 σS2


θI
θS

 =

 σIθ
I

µ− r

 ,

σIθ
I = σIθ

I (4.2)

σS1 θ
I + σS2 θ

S = µ− r (4.3)

Therefore, by equation (4.2);
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θI = θI

and

by equation(4.3);

σS2 θ
S = µ− r − σS1 θI (4.4)

Finally,

θS =
µ− r − σS1 θI

σS2
(4.5)

With the assumption that the exponential process Z(t) which we assumed to be

Martingale in P to have the following Stochastic Differential Equation

dZ(t) = Z(t)
(
− θIdW I(t)− θSdW S(t)

)

Solving for Z(t), we use Itô’s formula for continuous processes.

Let f(t) = lnZ(t).
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df =
∂f

∂t
dt+

∂f

∂Z
dZ(t)

+
1

2

∂2Q

∂Z2
(dZ(t))2

= 0.dt+
1

Z(t)
dZ(t) +

1

2

(
− 1

Z(t)2

(
dZ(t)

)2
)

=
1

Z(t)
dZ(t)− 1

2

1

Z(t)2

(
dZ(t)

)2

Calculating [dZ(t)]2:

(dZ(t))2 =

[
Z(t)

(
− θIdW I(t)− θSdW S(t)

)]2

=

(
Z(t)(−θIdW I(t)− θSdW S(t)

)
.

(
Z(t)(−θIdW I(t)− θSdW S(t)

)
=

(
− Z(t)θIdW I(t)− Z(t)θSdW S(t)

)
.

(
− Z(t)θIdW I(t)− Z(t)θSdW S(t)

)

But,

dt.dt = dt.dW I(t) = dt.dW S(t) = dW I(t).dt = 0

dW I(t).dW S(t) = dW S(t).dt = dW S(t).dW I(t) = 0

dW S(t).dW S = dW I(t).dW I(t) = dt
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Now,

(dZ(t))2 = Z2(θI)2dt+ Z2(θS)2dt

= Z2(t)

(
(θI)2 + (θS)2

)
dt

Therefore,

df =
1

Z(t)
dZ(t)− 1

2

1

Z(t)2
(dZ(t))2

=
1

Z(t)
[Z(t)(−θIdW I(t)− θSdW S(t)]− 1

2

1

Z(t)2

[
Z2(t)

(
(θI)2 + (θS)2

)
dt
]

= −θIdW I(t)− θSdW S(t)− 1

2

(
(θI)2 + (θS)2

)
dt

But, f(t) = lnZ(t).

Therefore,

d
(

lnZ(t)
)

= −θIdW I(t)− θSdW S(t)− 1

2

(
(θI)2 + (θS)2

)
dt (4.6)

Taking integral both sides of (4.6):
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∫ t

0

d
(

lnZ(p)
)

=

∫ t

0

[
− θIdW I(p)− θSdW S(p)− 1

2

(
(θI)2 + (θS)2

)
dp
]

lnZ(t)− lnZ(0) = −θIW I(t) + θIW I(0)− θSW S(t) + θSW S(0)

−1

2

(
(θI)2 + (θS)2

)
t− 1

2

(
(θI)2 + (θS)2

)
.0

W (0) = (W I(0),W S(0),Ww(0))′ = (0, 0, 0)′,then we have:

lnZ(t)− lnZ(0) = −θIW I(t)− θSW S(t)− 1

2

(
(θI)2 + (θS)2

)
t

lnZ(t) = lnZ(0)− θIW I(t)− θSW S(t)− 1

2

(
(θI)2 + (θS)2

)
t (4.7)

Taking the exponential both sides of the equation (4.7), we get:

exp

[
lnZ(t)

]
= exp

[
lnZ(0)− θIW I(t)− θSW S(t)− 1

2

(
(θI)2 + (θS)2

)
t

]
Z(t) = Z(0) exp

[
− θIW I(t)− θSW S(t)− 1

2

(
(θI)2 + (θS)2

)
t

]

Let Z(0) = 1 ,
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Z(t) = exp

[
− θIW I(t)− θSW S(t)− 1

2

(
(θI)2 + (θS)2

)
t

]

We assume an investor gives a stochastic income over the time t, and the income rate

at time t is a(Yt, t). Yt is the state variable.

dYt = α(Yt, t)dt+ β(Yt, t)dV (t) (4.8)

The correlation between dW S(t) and dV (t) is ρ dt where ρ ∈ [−1, 1].

Vt can be written in the form Vt = ρW S(t) +
√

(1− ρ2)Ww(t) where Ww(t) is a

standard Brownian Motion independent of W S(t).

Also, we assume cash outflows process L(t) at time t follows the dynamic:

dL(t) = L(t)
(
δdt+ σL1 dW

I(t) + σL2 dW
S(t)

)
, (4.9)

L(0) = L0 > 0

where, δ > 0 is the expected growth rate of the cash outflows and σL1 is the volatility

caused by the source of inflation, W I(t) and σL2 is the volatility caused by the source

of uncertainty arises from the stock market,W S(t).
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4.2.1 The Dynamics of the Stochastic Wage Income

Solving for Y(t) we use Itô’s lemma for continuous processes and apply it on (4.8).

We take a special case where we let α(Yt, t) = αYt and β(Yt, t) = βYt.

Let f − C1,2 and consider the stochastic wage income rate a(Yt, t) = f(y, t).

We know, Vt = ρW S(t) +
√

(1− ρ2)Ww(t).

Therefore, dVt = ρdW S(t) +
√

(1− ρ2)dWw(t)

This implies,

dYt = αYtdt+ βYtdVt

dYt = αYtdt+ βYt
[
ρdW S(t) +

√
(1− ρ2)dWw(t)

]
dYt = Y (T )

(
αdt+ β

[
ρdW S(t) +

√
(1− ρ2)dWw(t)

])
dYt = Y (T )

(
αdt+ βρdW S(t) + β

√
(1− ρ2)dWw(t)

)

Let f(t) = lnY (t).



62 CHAPTER 4. THE MODEL

df =
∂f

∂t
dt+

∂f

∂Y
dY (t)

+
1

2

∂2f

∂Y 2
(dY (t))2

= 0.dt+
1

Y (t)
dL(t) +

1

2

(
− 1

Y (t)2

(
dY (t)

)2
)

=
1

Y (t)
dY (t)− 1

2

1

Y (t)2

(
dY (t)

)2

Calculating [dY (t)]2:

(dY (t))2 =

[
Y (t)

(
αdt+ βρdW S(t) + β

√
(1− ρ2)dWw(t)

)]2

=

(
Y (t)

(
αdt+ βρdW S(t) + β

√
(1− ρ2)dWw(t)

))
.

(
Y (t)

(
αdt+ βρdW S(t) + β

√
(1− ρ2)dWw(t)

))

(dY (t))2 = Y 2(t)

[
α2(dt.dt) + αβρ(dt.dW S(t)) + αβ

√
(1− ρ2)(dt.dWw(t))

+βρα(dW S(t).dt) + β2ρ2(dW S(t).dW S(t)) + β2ρ
√

(1− ρ2)(dW S(t).dWw(t))

+β
√

(1− ρ2)α(dWw(t).dt) + β
√

(1− ρ2)βρ(dWw(t).dW S(t))

+β2(
√

(1− ρ2))2(dWw(t).dWw(t))

]
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But,

dt.dt = dt.dW I(t) = dt.dW S(t) = dW I(t).dt = 0

dW I(t).dW S(t) = dW S(t).dt = dW S(t).dW I(t) = 0

dWw(t).dW S(t) = dW S(t).dWw = dW S(t).dWw(t) = 0

dWw(t).dW S(t) = dt.dWw(t) = dWw(t).dt = 0

dW S(t).dW S = dW I(t).dW I(t) = dWw(t).dWw(t) = dt

Now,

(dY (t))2 = Y 2(t)
[
β2ρ2dt+ β2(1− ρ2)dt

]
(4.10)

Therefore,

df =
1

Y (t)
dY (t)− 1

2

1

Y (t)2

(
dY (t)

)2

=
1

Y (t)
dY (t)− 1

2

1

Y 2(t)

[
Y 2(t)

(
β2ρ2dt+ β2(1− ρ2)dt

)]
=

1

Y (t)
dY (t)− 1

2
[β2ρ2dt+ (1− ρ2)dt]

=
1

Y (t)

[
Y (t)

(
αdt+ βρdW S(t) + β

√
1− ρ2dWw(t)

)]
− 1

2

(
β2ρ2dt+ β2(1− ρ2)dt

)
= αdt+ βρdW S(t) + β

√
1− ρ2dWw(t)− 1

2

(
β2ρ2dt+ β2(1− ρ2)dt

)
= αdt+ βρdW S(t) + β

√
1− ρ2dWw(t)− 1

2
β2ρ2dt− 1

2
β2(1− ρ2)dt

=
(
α− 1

2
β2ρ2 − 1

2
β2(1− ρ2)

)
dt+ βρdW S(t) + β

√
1− ρ2dWw(t)
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But, f(t) = lnY (t).

Therefore,

d(lnY (t)) =
(
α− 1

2
β2ρ2 − 1

2
β2(1− ρ2)

)
dt+ βρdW S(t) + β

√
1− ρ2dWw(t)∫ t

0

d[lnY (p)] =

∫ t

0

(
α− 1

2
β2ρ2 − 1

2
β2(1− ρ2)

)
dp

+

∫ t

0

βρdW S(p) +

∫ t

0

β
√

1− ρ2dWw(p)

lnY (t)− lnY (0) =

∫ t

0

(
α− 1

2
β2ρ2 − 1

2
β2(1− ρ2)

)
dp

+

∫ t

0

βρdW S(p) +

∫ t

0

β
√

1− ρ2dWw(p)

lnY (t) = lnY (0) +

(
α− 1

2
β2ρ2 − 1

2
β2(1− ρ2)

)
t−
(
α− 1

2
β2ρ2 − 1

2
β2
√

1− ρ2

)
.0

+βρW S(t)− βρdW S(0) + β
√

1− ρ2dWw(t)− β
√

1− ρ2dWw(0)

W (0) = (W I(0),W S(0),Ww(0))′ = (0, 0, 0)′,then:

lnY (t) = lnY (0) +
(
α− 1

2
β2ρ2 − 1

2
β2(1− ρ2)

)
t+ βρW S(t) + β

√
1− ρ2Ww(t)

Taking the exponential both sides of the equation:
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exp

[
lnY (t)

]
= exp

[
lnY (0) +

(
α− 1

2
β2ρ2 − 1

2
β2(1− ρ2)

)
t+ βρW S(t) + β

√
1− ρ2Ww(t)

]
Y (t) = Y (0) exp

[(
α− 1

2
β2ρ2 − 1

2
β2(1− ρ2)

)
t+ βρW S(t) + β

√
1− ρ2Ww(t)

]

But Y (0) = Y0 > 0 ,

Y (t) = Y0 exp

[(
α− 1

2
β2ρ2 − 1

2
β2(1− ρ2)

)
t+ βρW S(t) + β

√
1− ρ2Ww(t)

]

4.2.2 The Dynamics of the Stochastic Cash Outflows

We now apply Itô lemma on (4.9);

Solving for L(t), we use Itô’s formula for continuous processes.

Let f(t) = lnL(t).

df =
∂f

∂t
dt+

∂f

∂L
dL(t)

+
1

2

∂2f

∂L2

(
dL(t)

)2

= 0.dt+
1

L(t)
dL(t) +

1

2

(
− 1

L(t)2

(
dL(t)

)2
)

=
1

L(t)
dL(t)− 1

2

1

L(t)2

(
dL(t)

)2
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Calculating [dL(t)]2:

(dL(t))2 =

[
L(t)

(
δdt+ σL1 dW

I(t) + σL2 dW
S(t)

)]2

=

(
L(t)

(
δdt+ σL1 dW

I(t) + σL2 dW
S(t)

))
.

(
L(t)

(
δdt+ σL1 dW

I(t) + σL2 dW
S(t)

))

(dL(t))2 = L2(t)

[
δ2(dt).dt+ δσL1 dt.dW

I(t) + δσL2 dt.dW
S(t)

+σL1 δdW
I(t).dt+ σL1 σ

L
1 dW

I(t).dW I(t) + σL1 σ
L
2 dW

I(t).dW S(t)

+σL2 δdW
S(t).dt+ σL2 σ

L
1 dW

S(t)dW I(t) + σL2 σ
L
2 dW

S(t).dW S(t)

]

But,

dt.dt = dt.dW I(t) = dt.dW S(t) = dW I(t).dt = 0

dW I(t).dW S(t) = dW S(t).dt = dW S(t).dW I(t) = 0

dW S(t).dW S = dW I(t).dW I(t) = dt

Now,
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(dL(t))2 = L2(t)[(σL1 )2dt+ (σL2 )2dt] (4.11)

Therefore,

df =
1

L(t)
dL(t)− 1

2

1

L(t)2

(
dL(t)

)2

=
1

L(t)
dL(t)− 1

2

1

L(t)2

[
L2(t)

(
(σL1 )2dt+ (σL2 )2dt

)]
=

1

L(t)
dL(t)− 1

2
[(σL1 )2dt+ (σL2 )2dt]

=
1

L(t)

[
L(t).

(
δdt+ σL1 dW

I(t) + σL2 dW
S(t)

)]
− 1

2
((σL1 )2dt+ (σL2 )2dt)

= δdt+ σL1 dW
I(t) + σL2 dW

S(t)− 1

2

(
(σL1 )2dt+ (σL2 )2dt

)
= δdt+ σL1 dW

I(t) + σL2 dW
S(t)− 1

2
(σL1 )2dt− 1

2
(σL2 )2dt

=
(
δ − 1

2
(σL1 )2 − 1

2
(σL2 )2

)
dt+ σL1 dW

I(t) + σL2 dW
S(t)

But, f(t) = lnL(t).

Therefore,

d(lnL(t)) =
(
δ − 1

2
(σL1 )2 − 1

2
(σL2 )2

)
dt+ σL1 dW

I(t) + σL2 dW
S(t)∫ t

0

d[lnL(p)] =

∫ t

0

(
δ − 1

2
σL1 −

1

2
σL2
)
dp+

∫ t

0

σL1 dW
I(p) +

∫ t

0

σL2 dW
S(p)

lnL(t)− lnL(0) =

∫ t

0

(
δ − 1

2
(σL1 )2 − 1

2
(σL2 )2

)
dp

∫ t

0

σL1 dW
I(p) +

∫ t

0

σL2 dW
S(p)
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lnL(t) = lnL(0) +

(
δ − 1

2
(σL1 )2 − 1

2
(σL2 )2

)
t−
(
δ − 1

2

1

L(t)2

)
.0

+σL1W
I(t)− σL1W I(0) + σL2W

S(t)− σL2W S(0)

W (0) = (W I(0),W S(0),Ww(0))′ = (0, 0, 0)′,then:

lnL(t) = lnL(0) +
(
δ − 1

2
(σL1 )2 − 1

2
(σL2 )2

)
t+ σL1W

I(t) + σL2W
S(t) (4.12)

Taking the exponential both sides of equation (4.12):

exp

[
lnL(t)

]
= exp

[
lnL(0) +

(
δ − 1

2
(σL1 )2 − 1

2
(σL2 )2

)
t+ σL1W

I(t) + σL2W
S(t)

]
L(t) = L(0) exp

[(
δ − 1

2
(σL1 )2 − 1

2
(σL2 )2

)
t+ σL1W

I(t) + σL2W
S(t)

]

But L(0) = L0 > 0 ,

L(t) = L0 exp

[(
δ − 1

2
(σL1 )2 − 1

2
(σL2 )2

)
t+ σL1W

I(t) + σL2W
S(t)

]
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4.3 The Dynamics of the Wealth Process

Let X∆,Y,L(t) be the wealth process at time t, where ∆(t) = (∆I(t),∆S(t)) is the

portfolio process at time t and ∆I(t) is the proportion of wealth invested in the

inflation-linked bond at time t and ∆S(t) is the proportion of wealth invested in the

stock at time t. Then, ∆0(t) = 1−∆I(t)−∆S(t) is the proportion of wealth invested

in cash account at time t.

We then define the corresponding continuous and adapted wealth processX∆,Y,L(t), t ∈

[0, T ] with respect to the self-financing trading strategy ∆ as:

dX∆,Y,L(t) = ∆S(t)X∆,Y,L(t)
dS(t)

S(t)

+∆I(t)X∆,Y,L(t)
dB(t, Q(t))

B(t, Q(t))

+
(
1−∆S(t)−∆I(t)

)
X∆,Y,L(t)

dC(t)

C(t)

+
(
Y (t)− L(t)

)
dt,

= ∆S(t)X∆,Y,L(t)
[
µdt+ σS1 dW

I(t) + σS2 dW
S(t)

]
+∆I(t)X∆,Y,L(t)

[
(r + σIθ

I)dt+ σIdW
I(t)
]

+
(
1−∆S(t)−∆I(t)

)
X∆,Y,L(t)

[
rdt
]

+
(
Y (t)− L(t)

)
dt (4.13)
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4.4 Discounted Income and Discounted Outflow

Processes

Definition 4.4.1. The expected discounted stochastic wage income (EDSWI) pro-

cess at time t is defined as:

Ψ(t) = E
[ ∫ T

t

Λ(u)

Λ(t)
Y (u)du|F(t)

]
, T ≥ t, (4.14)

where Λ(t) =
Z(t)

C(t)
= exp(−rt)Z(t) is the stochastic discount factor which adjusts for

nominal interest rate and market price of risks, ad E(.|F(t)) is a real world conditional

expectation with respect to the Brownian filtration (F(t))t≥0.

4.4.1 Proposition 1

Let Ψ(t) be the expected discounted stochastic wage income process, then:

Ψ(t) =
Y (t)

φ

[
exp(φ(T − t)− 1)

]
, where φ = α− r − (θI)2 − (θS)2

Proof. By definition:
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Ψ(t) = E
[ ∫ T

t

Λ(u)

Λ(t)
Y (u)du|F(t)

]
= E

[ ∫ T

t

Λ(u)Y (t)

Λ(t)Y (t)
Y (u)du|F(t)

]
= ϕ(t)E

[ ∫ T

t

Λ(u)Y (u)

Λ(t)Y (t)
du|F(t)

]

But the processes Λ(.) and ϕ(.) are geometric Brownian motions and it follows that

Λ(u)Y (u)

Λ(t)Y (t)
is independent of the Brownian filtration F(t), u ≥ t. Adopting change of

variables, we have,

Let n = u− t, u ≥ t,

Ψ(t) = Y (t)E
[ ∫ T

t

Λ(u)Y (u)

Λ(t)Y (t)
du|F(t)

]
= Y (t)E

[ ∫ T−t

t−t

Λ(u− t)Y (u− t)
Λ(t− t)Y (t− t)

d(u− t)|F(t− t)
]

= Y (t)E
[ ∫ T−t

0

Λ(n)Y (n)

Λ(0)Y (0)
dn|F(0)

]
But,

Λ(0) =
Z(0)

C(0)

= exp(−r(0))Z(0)

= exp(0)Z(0)

= 1
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Therefore,

Ψ(t) = Y (t)E
[ ∫ T−t

0

Λ(n)Y (n)

Y (0)
dn|F(0)

]

Now,

Λ(n)Y (n)

Y (0)
= Λ(n)

Y (n)

Y (0)

= exp(−rn)Z(n)
Y (n)

Y (0)

= exp(−rn) exp(−θIW I(n)− θSW S(n)− 1

2

(
(θI)2 + (θS)2

)
n)

.

Y (0) exp

[
(α− 1

2
β2ρ2 − 1

2
β2(1− ρ2))n+ βρW S(n) + β

√
1− ρ2Ww(n)

]
Y (0)

= exp

(
− rn

)
exp

(
− θIW I(n)− θSW S(n)− 1

2

(
(θI)2 + (θS)2

)
n

)
. exp

(
(α− 1

2
β2ρ2 − 1

2
(1− ρ2))n+ βρW S(n) + β

√
1− ρ2Ww(n)

)
(4.15)

Λ(n)Y (n)

Y (0)
= exp

(
− rn

)
exp

(
− θIW I(n)− θSW S(n)− 1

2
(θI)2n− 1

2
(θS)2n

)
. exp

(
αn− 1

2
β2ρ2n− 1

2
β2(1− ρ2)n+ βρW S(n) + β

√
1− ρ2Ww(n)

)
= exp

[
(α− r)n− 1

2

(
(θI)2 + (θS)2 + β2ρ2 + β2(1− ρ2)

)
n

]
. exp

(
− θIW I(n)− θSW S(n) + βρW S(n) + β

√
1− ρ2Ww(n)

)

Finally,
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Ψ(t) = Y (t)E
[ ∫ T−t

0

exp
[
(α− r)n− 1

2

(
(θI)2 + (θS)2 + β2ρ2 + β2(1− ρ2)

)
n
]

. exp
(
− θIW I(n)− θSW S(n) + βρW S(n) + β

√
1− ρ2Ww(n)

)]
dn

= Y (t)

∫ T−t

0

E
[

exp
(
(α− r)n

)]
E
[

exp

(
− 1

2

(
(θI)2 + (θS)2 + β2ρ2 + β2(1− ρ2)

)
n

)]
.E
[

exp

(
− θIW I(n)− θSW S(n) + βρW S(n) + β

√
1− ρ2Ww(n)

)]
dn

Assuming that the Brownian motions are independent, we have:

E
[

exp(βρ2W S(n))
]

= exp
(1

2
β2ρ2n

)
E
[

exp(β
√

1− ρ2W S(n))
]

= exp
(1

2
β2(1− ρ2)n

)
E
[

exp(θIW I(n))
]

= exp
(1

2
(θI)2n

)
E
[

exp(θSW S(n))
]

= exp
(1

2
(θS)2n

)

This implies that:

Ψ(t) = Y (t)

∫ T−t

0

[
exp

(
(α− r)n

)][
exp

(
− 1

2

(
(θI)2 + (θS)2 + β2ρ2 + β2(1− ρ2)

)
n
)
]
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.

[
exp

(
− 1

2
(θI)2n− 1

2
(θS)2n+

1

2
β2ρ2n+

1

2
β2(1− ρ2)n

)]
dn

= Y (t)

∫ T−t

0

[
exp

(
(α− r)n

)][
exp

((
− 1

2
(θI)2 − 1

2
(θS)2 − 1

2
β2ρ2 − 1

2
β2(1− ρ2)

)
n

)]
.

[
exp

(
− 1

2
(θI)2n− 1

2
(θS)2n+

1

2
β2ρ2n+

1

2
β2(1− ρ2)n

)]
dn

= Y (t)

∫ T−t

0

[
exp

(
(α− r)n

)][
exp

(
(−1

2
(θI)2 − 1

2
(θS)2

)
n
)]

.

[
exp

(
(−1

2
(θI)2n− 1

2
(θS)2n

)]
dn

= Y (t)

∫ T−t

0

[
exp

(
(α− r)n

)
]

[
exp

((
− 1

2
(θI)2 − 1

2
(θS)2 − 1

2
(θI)2 − 1

2
(θS)2

)
n
)]
dn

= Y (t)

∫ T−t

0

[
exp

(
(α− r)n

)][
exp

((
− (θI)2 − (θS)2

)
n
)]
dn

= Y (t)

∫ T−t

0

[
exp

((
α− r − (θI)2 − (θS)2

)
n
)]
dn

= Y (t)

∫ T−t

0

exp
(
(α− r − (θI)2 − (θS)2)n

)
dn

= Y (t)

∫ T−t

0

exp(φn)dn

where φ = α− r − (θI)2 − (θS)2.

Therefore,

Ψ(t) =
(Y (t)

φ

[
exp

(
φ(T − t)− 1

)]
(4.16)

By Proposition 1, the value of expected future stochastic wage income process Ψ(t)

is proportional to the instantaneous total stochastic wage income process Y (t).
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Taking the differential of both sides of 4.16 , we obtain;

dΨ(t) =
exp

(
φ(T − t)− 1

)
φ

dY (t)

=
exp

(
φ(T − t)− 1

)
φ

[
Y (t)

(
αdt+ βρdW S(t) + β

√
(1− ρ2)dWw(t)

)]
=

exp
(
φ(T − t)− 1

)
φ

Y (t)αdt+
exp

(
φ(T − t)− 1

)
φ

Y (t)βρdW S(t)

+
exp

(
φ(T − t)− 1

)
φ

Y (t)β
√

1− ρ2dWw(t)

=
exp

(
φ(T − t)− 1

)
φ

Y (t)αdt+
exp

(
φ(T − t)− 1

)
φ

Y (t)βρdW S(t)

+
exp

(
φ(T − t)− 1

)
φ

Y (t)β
√

1− ρ2dWw(t) + Y (t)dt− Y (t)dt

=
exp

(
φ(T − t)− 1

)
φ

Y (t)αdt+
exp

(
φ(T − t)− 1

)
φ

Y (t)
φ

exp
(
φ(T − t)− 1

)dt
+

exp
(
φ(T − t)− 1

)
φ

Y (t)βρdW S(t)

+
exp

(
φ(T − t)− 1

)
φ

Y (t)β
√

1− ρ2dWw(t)− Y (t)dt

=
exp

(
φ(T − t)− 1

)
φ

Y (t)
[
(α +

φ

exp
(
φ(T − t)− 1

))dt

+βρdW S(t) + β
√

1− ρ2dWw(t)
]
− Y (t)dt

=
exp

(
φ(T − t)− 1

)
φ

Y (t)
[
Fdt+ βρdW S(t) + β

√
1− ρ2dWw(t)

]
− Y (t)dt

Therefore

dΨ(t) = Ψ(t)
[
Fdt+ βρdW S(t) + β

√
1− ρ2dWw(t)

]
− Y (t)dt (4.17)

where F =
α
[

exp
(
φ(T − t)− 1

)]
+ φ

exp
(
φ(T − t)− 1

)
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Definition 4.4.2. The expected discounted cash outflows process at time t is defined

as:

Φ(t) = E[

∫ T+t

t

Λ(u)

Λ(t)
L(u)du|F(t)], T ≥ t), (4.18)

where Λ(t) =
Z(t)

C(t)
= exp(−rt)Z(t) is the stochastic discount factor which adjusts for

nominal interest rate and market price of risks, ad E(.|F(t)) is a real world conditional

expectation with respect to the Brownian filtration (F(t))t≥0.

4.4.2 Proposition 2

Let Φ(t) be the expected discounted cash outflows(EDCO) process, then:

Φ(t) =
L(t)

η

(
exp(ηT )− 1

)
, where η = δ − r − (θI)2 − (θS)2

Proof. By definition:

Φ(t) = E
[ ∫ T+t

t

Λ(u)

Λ(t)
L(u)du|F(t)

]
= E

[ ∫ T+t

t

Λ(u)L(t)

Λ(t)L(t)
L(u)du|F(t)

]
= L(t)E

[ ∫ T+t

t

Λ(u)L(u)

Λ(t)L(t)
du|F(t)

]

But the process Λ(.) and L(.) are geometric Brownian motions and it follows that
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Λ(u)L(u)

Λ(t)L(t)
is independent of the Brownian filtration F(t), u ≥ t. Adopting change of

variables, we have,

Let τ = u− t, u ≥ t,

Φ(t) = L(t)E
[ ∫ T+t

t

Λ(u)L(u)

Λ(t)L(t)
du|F(t)

]
= L(t)E

[ ∫ T+t−t

t−t

Λ(u− t)L(u− t)
Λ(t− t)L(t− t)

d(u− t)|F(t− t)
]

= L(t)E
[ ∫ T

0

Λ(τ)L(τ)

Λ(0)L(0)
d(τ)|F(0)

]
But, Λ(0) =

Z(0)

C(0)

= exp(−r(0))Z(0)

= exp(0)Z(0)

= 1

Therefore

Φ(t) = L(t)E
[ ∫ T

0

Λ(τ)L(τ)

L(0)
d(τ)|F(0)

]
Now,

Λ(τ)L(τ)

L(0)
= Λ(τ)

L(τ)

L(0)
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= exp(−rτ)Z(τ)
L(τ)

L(0)

= exp(−rτ)Z(τ)
L(0) exp[(δ − 1

2
(σL1 )2 − 1

2
(σL2 )2)τ + σL1W

I(τ) + σL2W
S(τ)]

L(0)

= exp(−rτ)Z(τ) exp[(δ − 1

2
(σL1 )2 − 1

2
(σL2 )2)τ + σL1W

I(τ) + σL2W
S(τ)]

= exp(−rτ) exp(−θIW I(τ)− θSW S(τ)− 1

2
(θI)2τ − 1

2
(θS)2τ)

. exp[(δ − 1

2
(σL1 )2 − 1

2
(σL2 )2)τ + σL1W

I(τ) + σL2W
S(τ)] (4.19)

Finally,

Φ(t) = L(t)E[

∫ T

0

exp(−rτ)exp(−θIW I(τ)− θSW S(τ)− 1

2
(θI)2τ − 1

2
(θS)2τ)

. exp[(δ − 1

2
(σL1 )2 − 1

2
(σL2 )2)τ + σL1W

I(τ) + σL2W
S(τ)]

= L(t)E[

∫ T

0

exp[
(
(δ − r)− 1

2
(θI)2 − 1

2
(θS)2 − 1

2
(σL1 )2 − 1

2
(σL2 )2

)
τ ]

. exp[−θIW I(τ)− θSW S(τ) + σL1W
I(τ) + σL2W

S(τ)]

Assuming the brownian motions are independent, we have:

Φ(t) = L(t)

∫ T

0

E[exp[
(
(δ − r)− 1

2
(θI)2 − 1

2
(θS)2 − 1

2
(σL1 )2 − 1

2
(σL2 )2

)
τ ]

.E[exp[−θIW I(τ)− θSW S(τ) + σL1W
I(τ) + σL2W

S(τ)]]
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But,

E
[

exp(θIW I(τ))
]

= exp
(1

2
(θI)2τ

)
E
[

exp(θIW S(τ))
]

= exp
(1

2
(θS)2τ

)
E
[

exp(σL1W
I(τ))

]
= exp

(1

2
(σL1 )2τ

)
E
[

exp(σL2W
S(τ))

]
= exp

(1

2
(σL2 )2τ

)

This implies that

Φ(t) = L(t)

∫ T

0

exp[
(
(δ − r)− 1

2
(θI)2 − 1

2
(θS)2 − 1

2
(σL1 )2 − 1

2
(σL2 )2

)
τ ]

. exp[−1

2
(θI)2τ − 1

2
(θS)2τ +

1

2
(σL1 )2τ +

1

2
(σL2 )2τ ]

Φ(t) = L(t)

∫ T

0

exp[
(
(δ − r − 1

2
(θI)2 − 1

2
(θS)2

)
τ ]

. exp[−1

2
(θI)2τ − 1

2
(θS)2τ ]

= L(t)

∫ T

0

exp[
(
(δ − r − 1

2
(θI)2 − 1

2
(θS)2 − 1

2
(θI)2τ − 1

2
(θS)2

)
τ ]
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= L(t)

∫ T

0

exp[
(
(δ − r − (θI)2 − (θS)2

)
τ ]

= L(t)

∫ T

0

exp(ητ)dτ

where η = δ − r − (θI)2 − (θS)2.

Therefore,

Φ(t) =
L(t)

η
[exp(ηT )− 1)] (4.20)

Proposition 2 tells us that the expected discounted cash process Φ(t) is proportional

to the instantaneous total cash outflows process L(t).

Definition 4.4.3. Let Φ(t) be the expected discounted cash outflows process, then:

dΦ(t) = Φ(t)[qdt+ σL1 dW
I(t) + σL2 dW

S(t)]− L(t)dt

where q =
δ(exp(ηT )− 1) + η

exp(ηT )− 1
(4.21)

Proof. Taking the differential of both sides of (4.20), we obtain:
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dΦ(t) =
exp(ηT )− 1

η
dL(t)

=
exp(ηT )− 1

η

[
L(t)(δdt+ σL1 dW

I(t) + σ2LdW
S(t))

]
=

exp(ηT )− 1

η
L(t)δdt+

exp(ηT )− 1

η
L(t)σL1 dW

I(t)

+
exp(ηT )− 1

η
L(t)σ2LdW

S(t)

=
exp(ηT )− 1

η
L(t)δdt+ L(t)dt+

exp(ηT )− 1

η
L(t)σL1 dW

I(t)

+
exp(ηT )− 1

η
L(t)σ2LdW

S(t)− L(t)dt

=
exp(ηT )− 1

η
L(t)δdt+

(exp(ηT )− 1

η

)
L(t)

η

exp(ηT )− 1
dt

+
exp(ηT )− 1

η
L(t)σL1 dW

I(t) +
exp(ηT )− 1

η
L(t)σL2 dW

S(t)− L(t)dt

=
exp(ηT )− 1

η
L(t)

[
(δ +

η

exp(ηT )− 1
)dt+ σd1W

I(t) + σL2 dW
S(t)

]
− L(t)dt

=
exp(ηT )− 1

η
L(t)

[
qdt+ σL1 dW

I(t) + σL2 dW
S(t)

]
− L(t)dt

Therefore dΦ(t) = Φ(t)
[
qdt+ σL1 dW

I(t) + σL2 dW
S(t)L

]
− L(t)dt

where q =
δ(exp(ηT )− 1) + η

exp(ηT )− 1

4.5 Wealth Valuation of the Investor

Definition 4.5.1. The value of wealth process of the Investor at time t is defined as:
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V (t) = X∆,Y,L + Ψ(t)− Φ(t) (4.22)

The value of wealth V (T ) equals the wealth, X∆,Y,L plus the discounted expected

stochastic wage income, Ψ(t) less the expeted value of cash outflows Φ(t).

4.5.1 Proposition 3

The change in wealth of the Investor is given by the dynamics:

dV (t) =
[
∆S(t)X∆,Y (t),L(t)(µ− r) + ∆I(t)X∆,Y (t),L(t)σIθ

I +X∆,Y (t),L(t)r + Ψ(t)F − Φ(t)q
]
dt(4.23)

+
[
∆S(t)X∆,Y (t),L(t)σS1 + ∆I(t)X∆,Y (t),L(t)σI + ∆I(t)X∆,Y (t),L(t)σI − Φ(t)σL1

]
dW I(t)

+
[
∆S(t)X∆,Y (t),L(t)σS2 + Ψ(t)βρ+ Φ(t)σL2

]
dW S(t)

+
[
Ψ(t)β

√
1− ρ2

]
dWw(t)

V (0) = v = x+ Ψ(0)− Φ(0). (4.24)

Proof. Taking the differential of both sides of (4.22) and substituting in (4.13), (4.17)

and (4.21), the result follows.
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dV (t) = dX∆,Y (t),L(t) + dΨ(t)− dΦ(t) (4.25)

=
[
∆S(t)X∆,Y (t),L(t)dS(t)

S(t)
+ ∆I(t)X∆,Y (t),L(t)dB(t)

B(t)

+(1−∆S(t)−∆I(t))X∆,Y (t),L(t)dC(t)

C(t)
+ (Y (t)− L(t))dt

]
+
[
Ψ(t)(Fdt+ βρdW s(t) + β

√
1− ρ2dWw(t))− Y (t)dt

]
−
[
Φ(t)(qdt+ σL1 dW

I(t) + σL2 dW
S(t))− L(t)dt

]
= ∆S(t)X∆,Y (t),L(t)

[
µdt+ σS1 dW

I(t) + σS2 dW
S(t)

]
+∆I(t)X∆,Y (t),L(t)

[
(r + σIθ

I)dt+ σIdW
I(t)
]

+X∆,Y (t),L(t)(rdt)−∆S(t)X∆,Y (t),L(t)(rdt)−∆I(t)X∆,Y (t),L(t)(rdt) + Y (t)dt− L(t)dt

+Ψ(t)Fdt+ Ψ(t)βρdW s(t) + Ψ(t)β
√

1− ρ2dWw(t)− Y (t)dt

+Φ(t)qdt+ Φ(t)σL1 dW
I(t) + Φ(t)σL2 dW

S(t) + L(t)dt

= ∆S(t)X∆,Y (t),L(t)µdt+ ∆S(t)X∆,Y (t),L(t)σS1 dW
I(t) + ∆S(t)X∆,Y (t),L(t)σS2 dW

S(t)

+∆I(t)X∆,Y (t),L(t)rdt+ ∆I(t)X∆,Y (t),L(t)σIθ
Idt+ ∆I(t)X∆,Y (t),L(t)σIdW

I(t)

+X∆,Y (t),L(t)rdt−∆S(t)X∆,Y (t),L(t)rdt−∆I(t)X∆,Y (t),L(t)rdt+ Y (t)dt− L(t)dt

+Ψ(t)Fdt+ Ψ(t)βρdW s(t) + Ψ(t)β
√

1− ρ2dWw(t)− Y (t)dt

+Φ(t)qdt+ Φ(t)σL1 dW
I(t) + Φ(t)σL2 dW

S(t) + L(t)dt

= ∆S(t)X∆,Y (t),L(t)µdt+ ∆S(t)X∆,Y (t),L(t)σS1 dW
I(t) + ∆S(t)X∆,Y (t),L(t)σS2 dW

S(t)

+∆I(t)X∆,Y (t),L(t)σIθ
Idt+ ∆I(t)X∆,Y (t),L(t)σIdW

I(t)

+X∆,Y (t),L(t)rdt−∆S(t)X∆,Y (t),L(t)rdt

+Ψ(t)Fdt+ Ψ(t)βρdW s(t) + Ψ(t)β
√

1− ρ2dWw(t)
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+Φ(t)qdt+ Φ(t)σL1 dW
I(t) + Φ(t)σL2 dW

S(t)

=
[
∆S(t)X∆,Y (t),L(t)(µ− r) + ∆I(t)X∆,Y (t),L(t)σIθ

I +X∆,Y (t),L(t)r + Ψ(t)Fdt− Φ(t)q
]
dt

+
[
∆S(t)X∆,Y (t),L(t)σS1 + ∆I(t)X∆,Y (t),L(t)σI + ∆I(t)X∆,Y (t),L(t)σI − Φ(t)σL1

]
dW I(t)

+
[
∆S(t)X∆,Y (t),L(t)σS2 + Ψ(t)βρ+ Φ(t)σL2

]
dW S(t)

+
[
Ψ(t)β

√
1− ρ2

]
dWw(t)

In this section, we now present the optimal portfolio strategies for the Investor.

4.6 Optimal Portfolio Strategies for the Investor

The Market model has been developed and described in the previous chapters. In

this chapter we calculate the optimal portfolio, that is, in this section we consider the

optimal portfolio strategy for the Investor.

Dynamic programming is the method that is used to calculate the optimal portfolio

choices and the utility function that is used is the power utility. In this case, the

power utility function is used as the risk aversion tool. The HJB equation is solved

in order to obtain our portfolio strategy.
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The main concern in this research is, the Investor is mostly interested in how to allo-

cate the wealth between the risk free asset, the stock and the inflation-linked bond.

4.6.1 Optimal Portfolio

Let f = C1,2 and define:

G(t) = f(t, V (t)) = f(t,X(t),Ψ(t),Φ(t)). (4.26)

This implies that G(t) is a stochastic process and ;

dG(t) =
∂f

∂t
(t,X(t),Ψ(t),Φ(t))dt

+
∂f

∂X
(t,X(t),Ψ(t),Φ(t))

[
dX
]

+
∂f

∂Ψ
(t,X(t),Ψ(t),Φ(t))

[
dΨ
]

+
∂f

∂Φ
(t,X(t),Ψ(t),Φ(t))

[
dΦ
]

+
1

2

∂2f

∂X2
(t,X(t),Ψ(t),Φ(t))

[
dX
]2

+
1

2

∂2f

∂Ψ2
(t,X(t),Ψ(t),Φ(t))

[
dΨ
]2

+
1

2

∂2f

∂Φ2
(t,X(t),Ψ(t),Φ(t))

[
dΦ
]2
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+
∂2f

∂Ψ.∂X
(t,X(t),Ψ(t),Φ(t))

[
dΨdX

]
+

∂2f

∂Φ∂X
(t,X(t),Ψ(t),Φ(t))

[
dΦdX

]
+

∂2f

∂Ψ∂Φ
(t,X(t),Ψ(t),Φ(t))

[
dΨdΦ

]
(4.27)

We then take G = f(t, V (t)) and substitute on (4.27), we have:

dG(t) =
∂f

∂t
(t,X(t),Ψ(t),Φ(t))dt

+
∂f

∂X
(t,X(t),Ψ(t),Φ(t))

[
∆S(t)X∆,Y,L(t)[µdt+ σS1 dW

I(t) + σS2 dW
S(t)]

+∆I(t)X∆,Y,L(t)[(r + σIθ
I)dt+ σIdW

I(t)]

+(1−∆S(t)−∆I(t))X∆,Y,L(t)[rdt] + (Y (t)− L(t))dt

]
+
∂f

∂Ψ
(t,X(t),Ψ(t),Φ(t))

[
Ψ(t)[Fdt+ βρdW S(t) + β

√
1− ρ2dWw(t)]− Y (t)dt

]
+
∂f

∂Φ
(t,X(t),Ψ(t),Φ(t))

[
Φ(t)[qdt+ σL1 dW

I(t) + σL2 dW
S(t)]− L(t)dt

]
+

1

2

∂2f

∂X2
(t,X(t),Ψ(t),Φ(t))

[
∆S(t)X∆,Y,L(t)[µdt+ σS1 dW

I(t) + σS2 dW
S(t)]

+∆I(t)X∆,Y,L(t)[(r + σIθ
I)dt+ σIdW

I(t)]

+(1−∆S(t)−∆I(t))X∆,Y,L(t)[rdt] + (Y (t)− L(t))dt

]2

+
1

2

∂2f

∂Ψ2
(t,X(t),Ψ(t),Φ(t))

[
Ψ(t)[Fdt+ βρdW S(t) + β

√
1− ρ2dWw(t)]− Y (t)dt

]2

+
1

2

∂2f

∂Φ2
(t,X(t),Ψ(t),Φ(t))

[
Φ(t)[qdt+ σL1 dW

I(t) + σL2 dW
S(t)]− L(t)dt

]2

+
∂2f

∂Ψ.∂X
(t,X(t),Ψ(t),Φ(t))

[(
Ψ(t)[Fdt+ βρdW S(t) + β

√
1− ρ2dWw(t)]− Y (t)dt

)
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.

(
∆S(t)X∆,Y,L(t)

[
µdt+ σS1 dW

I(t) + σS2 dW
S(t)

]
+ ∆I(t)X∆,Y,L(t)

[
(r + σIθ

I)dt

+σIdW
I(t)
]

+ (1−∆S(t)−∆I(t))X∆,Y,L(t)[rdt] + (Y (t)− L(t))dt

)]
+

∂2f

∂Φ∂X
(t,X(t),Ψ(t),Φ(t))

[(
Φ(t)[qdt+ σL1 dW

I(t) + σL2 dW
S(t)]− L(t)dt

)
.

(
∆S(t)X∆,Y,L(t)[µdt+ σS1 dW

I(t) + σS2 dW
S(t)] + ∆I(t)X∆,Y,L(t)[(r + σIθ

I)dt

+σIdW
I(t)] + (1−∆S(t)−∆I(t))X∆,Y,L(t)[rdt] + (Y (t)− L(t))dt

)]
+

∂2f

∂Ψ∂Φ
(t,X(t),Ψ(t),Φ(t))

[(
Ψ(t)[Fdt+ βρdW S(t) + β

√
1− ρ2dWw(t)]− Y (t)dt

)
.

(
Φ(t)[qdt+ σL1 dW

I(t) + σL2 dW
S(t)]− L(t)dt

)]

But,

dt.dt = dt.dW I(t) = dt.dW S(t) = dW I(t).dt = 0

dW I(t).dW S(t) = dW S(t).dt = dW S(t).dW I(t) = 0

dWw(t).dW S(t) = dW S(t).dWw = dW S(t).dWw(t) = 0

dWw(t).dW S(t) = dt.dWw(t) = dWw(t).dt = 0

dW S(t).dW S = dW I(t).dW I(t) = dWw(t).dWw(t) = dt

Now,the above simplifies to:

dG(t) =
∂f

∂t
(t,X(t),Ψ(t),Φ(t))dt
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+
∂f

∂X
(t,X(t),Ψ(t),Φ(t))

[(
∆Sxµ+ ∆IxσIθ

I + xr −∆Sxr + Y (t)− L(t)
)
dt

+
(
∆SxσS1 + ∆IxσI

)
dW I(t) +

(
∆SxσS2

)
dW S(t)

]
+
∂f

∂Ψ
(t,X(t),Ψ(t),Φ(t))

[(
ΨF − Y (t)

)
dt+

(
Ψβρ

)
dW S +

(
Ψβ
√

1− ρ2
)
dWw(t)

]
+
∂f

∂Φ
(t,X(t),Ψ(t),Φ(t))

[
Φ(t)[

(
Φq − L(t)

)
dt+

(
ΦσL1

)
dW I(t) +

(
ΦσL2

)
dW S(t)

]
+

1

2

∂2f

∂X2
(t,X(t),Ψ(t),Φ(t))

[(
(∆S)2x2

(
(σS1 )2 + (σS2 )2

)
+
(
2∆SxσS1 ∆IxσI

)
+
(
(∆I)2x2(σI)

2
))
dt

]
+

1

2

∂2f

∂Ψ2
(t,X(t),Ψ(t),Φ(t))

[
Ψ2β2dt

]
+

1

2

∂2f

∂Φ2
(t,X(t),Ψ(t),Φ(t))

[
Φ2
(
(σL1 )2 + (σL2 )2

)
dt

]
+

∂2f

∂Ψ.∂X
(t,X(t),Ψ(t),Φ(t))

[(
Ψβρ∆SxσS2

)
dt

]
+

∂2f

∂Φ∂X
(t,X(t),Ψ(t),Φ(t))

[
Φ
(
σL1 ∆SxσS1 + σL1 σI + σL2 ∆SxσS2

)
dt

]
+

∂2f

∂Ψ∂Φ
(t,X(t),Ψ(t),Φ(t))

[(
ΨβρΦσL2

)
dt

]

Let f(t, V (t)) = J(t, V (t)) such that for a given portfolio strategy ∆ we introduce

the associated utility:

J(t, x,Ψ,Φ,∆) = Et,x,Ψ,Φ[U(V ∆(T ))] (4.28)

dJ(t) = Jtdt
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+Jx

[(
∆Sxµ+ ∆IxσIθ

I + xr −∆Sxr + Y (t)− L(t)
)
dt

+
(
∆SxσS1 + ∆IxσI

)
dW I(t) +

(
∆SxσS2

)
dW S(t)

]
+JΨ

[(
ΨF − Y (t)

)
dt+

(
Ψβρ

)
dW S +

(
Ψβ
√

1− ρ2
)
dWw(t)

]
+JΦ

[
Φ(t)[

(
Φq − L(t)

)
dt+

(
ΦσL1

)
dW I(t) +

(
ΦσL2

)
dW S(t)

]
+

1

2
Jxx

[(
(∆S)2x2

(
(σS1 )2 + (σS2 )2

)
+
(
2∆SxσS1 ∆IxσI

)
+
(
(∆I)2x2(σI)

2
))
dt

]
+

1

2
JΨΨ

[
Ψ2β2dt

]
+

1

2
JΦΦ

[
Φ2
(
(σL1 )2 + (σL2 )2

)
dt

]
+JΨx

[(
Ψβρ∆SxσS2

)
dt

]
+JΦx

[
Φ
(
σL1 ∆SxσS1 + σL1 σI + σL2 ∆SxσS2

)
dt

]
+JΨΦ

[(
ΨβρΦσL2

)
dt

]

We integrate both sides to get:

J(T, V (T )) = J(t, V (t))

+

∫ T

t

Jsds

+

∫ T

t

[
Jx
(
∆Sxµ+ ∆IxσIθ

I + xr −∆Sxr + Y (s)− L(s)
)
ds

+
(
∆SxσS1 + ∆IxσI

)
dW I(s) +

(
∆SxσS2

)
dW S(s)

]
+

∫ T

t

[
JΨ

(
ΨF − Y (t)

)
dt+

(
Ψβρ

)
dW S +

(
Ψβ
√

1− ρ2
)
dWw(s)

]
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+

∫ T

t

[
JΦΦ(t)[

(
Φq − L(t)

)
dt+

(
ΦσL1

)
dW I(s) +

(
ΦσL2

)
dW S(s)

]
+

1

2

∫ T

t

[
Jxx

(
(∆S)2x2

(
(σS1 )2 + (σS2 )2

)
+
(
2∆SxσS1 ∆IxσI

)
+
(
(∆I)2x2(σI)

2
))
ds

]
+

1

2

∫ T

t

[
JΨΨΨ2β2ds

]
+

1

2

∫ T

t

[
JΦΦΦ2

(
(σL1 )2 + (σL2 )2

)
ds

]
+

∫ T

t

[
JΨx

(
Ψβρ∆SxσS2

)
ds

]
+

∫ T

t

[
JΦxΦ

(
σL1 ∆SxσS1 + σL1 σI + σL2 ∆SxσS2

)
ds

]
+

∫ T

t

[
JΨΦ

(
ΨβρΦσL2

)
ds

]

J(T, V (T )) = J(t, V (t))

+

∫ T

t

[
Js +

(
∆Sxµ+ ∆IxσIθ

I + xr −∆Sxr + Y (s)− L(s)
)
Jx

+
(
ΨF − Y (s)

)
JΨ +

(
Φq − L(s)

)
JΦ

+
1

2

(
(∆S)2x2

(
(σS1 )2 + (σS2 )2

)
+
(
2∆SxσS1 ∆IxσI

)
+
(
(∆I)2x2(σI)

2
)))

Jxx

+
1

2

(
Ψ2β2

)
JΨΨ +

1

2
Φ2
(
(σL1 )2 + (σL2 )2

)
JΦΦ +

(
Ψβρ∆SxσS2

)
JΨx

+
(
Φ
(
σL1 ∆SxσS1 + σL1 σI + σL2 ∆SxσS2

))
JΦx +

(
ΨβρΦσL2

)
JΨΦ

]
ds

+

∫ T

t

[(
∆SxσS1 + ∆IxσI

)
Jx +

(
ΦσL1

)
JΦ

]
dW I(s)

+

∫ T

t

[(
∆SxσS2

)
Jx +

(
Ψβρ

)
JΨ +

(
ΦσL2

)
JΦ

]
dW S(s)

+

∫ T

t

[(
Ψβ
√

1− ρ2
)
JΨ

]
dWw(s) (4.29)
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Next we take the expectations on both sides of (4.29):

Et,x,Ψ,Φ
[
J(T, V (T ))

]
= J(t, V (t))

+Et,x,Ψ,Φ
[ ∫ T

t

(
Js +

(
∆Sxµ+ ∆IxσIθ

I + xr −∆Sxr + Y (s)− L(s)
)
Jx

+
(
ΨF − Y (s)

)
JΨ +

(
Φq − L(s)

)
JΦ

+
1

2

(
(∆S)2x2

(
(σS1 )2 + (σS2 )2

)
+
(
2∆SxσS1 ∆IxσI

)
+
(
(∆I)2x2(σI)

2
))

+
1

2

(
Ψ2β2

)
JΨΨ +

1

2
Φ2
(
(σL1 )2 + (σL2 )2

)
JΦΦ +

(
Ψβρ∆SxσS2

)
JΨx

+
(
Φ
(
σL1 ∆SxσS1 + σL1 σI + σL2 ∆SxσS2

))
JΦx +

(
ΨβρΦσL2

)
JΨΦ

)
ds

+

∫ T

t

((
∆SxσS1 + ∆IxσI

)
Jx +

(
ΦσL1

)
JΦ

)
dW I(s)

+

∫ T

t

((
∆SxσS2

)
Jx +

(
Ψβρ

)
JΨ +

(
ΦσL2

)
JΦ

)
dW S(s)

+

∫ T

t

((
Ψβ
√

1− ρ2
)
JΨ

)
dWw(s)

]

Then:

Et,x,Ψ,Φ
[
J(T, V (T ))

]
= J(t, V (t))

+Et,x,Ψ,Φ
[ ∫ T

t

[
Js +

(
∆Sxµ+ ∆IxσIθ

I + xr −∆Sxr + Y (s)− L(s)
)
Jx

+
(
ΨF − Y (s)

)
JΨ +

(
Φq − L(s)

)
JΦ
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+
1

2

(
(∆S)2x2

(
(σS1 )2 + (σS2 )2

)
+
(
2∆SxσS1 ∆IxσI

)
+
(
(∆I)2x2(σI)

2
))
Jxx

+
1

2

(
Ψ2β2

)
JΨΨ +

1

2
Φ2
(
(σL1 )2 + (σL2 )2

)
JΦΦ +

(
Ψβρ∆SxσS2

)
JΨx

+
(
Φ
(
σL1 ∆SxσS1 + σL1 σI + σL2 ∆SxσS2

))
JΦx +

(
ΨβρΦσL2

)
JΨΦ

]
ds

But because J(T, V∆(T )) = U(V∆(T )), therefore we have:

Et,x,Ψ,Φ
[
U(T, V (T ))

]
= J(t, x,Ψ,Φ)

+Et,x,Ψ,Φ
[ ∫ T

t

[
Js +

(
∆Sxµ+ ∆IxσIθ

I + xr −∆Sxr + Y (s)− L(s)
)
Jx

+
(
ΨF − Y (s)

)
JΨ +

(
Φq − L(s)

)
JΦ

+
1

2

(
(∆S)2x2

(
(σS1 )2 + (σS2 )2

)
+
(
2∆SxσS1 ∆IxσI

)
+
(
(∆I)2x2(σI)

2
))
Jxx

+
1

2

(
Ψ2β2

)
JΨΨ +

1

2
Φ2
(
(σL1 )2 + (σL2 )2

)
JΦΦ +

(
Ψβρ∆SxσS2

)
JΨx

+
(
Φ
(
σL1 ∆SxσS1 + σL1 σI + σL2 ∆SxσS2

))
JΦx +

(
ΨβρΦσL2

)
JΨΦ

]
ds

which implies:

J(t, x,Ψ,Φ) = Et,x,Ψ,Φ
[
U(T, V (T ))

]
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−Et,x,Ψ,Φ
[ ∫ T

t

[
Js +

(
∆Sxµ+ ∆IxσIθ

I + xr −∆Sxr + Y (s)− L(s)
)
Jx

+
(
ΨF − Y (s)

)
JΨ +

(
Φq − L(s)

)
JΦ

+
1

2

(
(∆S)2x2

(
(σS1 )2 + (σS2 )2

)
+
(
2∆SxσS1 ∆IxσI

)
+
(
(∆I)2x2(σI)

2
))
Jxx

+
1

2

(
Ψ2β2

)
JΨΨ +

1

2
Φ2
(
(σL1 )2 + (σL2 )2

)
JΦΦ +

(
Ψβρ∆SxσS2

)
JΨx

+
(
Φ
(
σL1 ∆SxσS1 + σL1 σI + σL2 ∆SxσS2

))
JΦx +

(
ΨβρΦσL2

)
JΨΦ

]
ds

By equation (4.28), we have that:

Et,x,Ψ,Φ
[ ∫ T

t

[
Js +

(
∆Sxµ+ ∆IxσIθ

I + xr −∆Sxr + Y (s)− L(s)
)
Jx

+
(
ΨF − Y (s)

)
JΨ +

(
Φq − L(s)

)
JΦ

+
1

2

(
(∆S)2x2

(
(σS1 )2 + (σS2 )2

)
+
(
2∆SxσS1 ∆IxσI

)
+
(
(∆I)2x2(σI)

2
))
Jxx

+
1

2

(
Ψ2β2

)
JΨΨ +

1

2
Φ2
(
(σL1 )2 + (σL2 )2

)
JΦΦ +

(
Ψβρ∆SxσS2

)
JΨx

+
(
Φ
(
σL1 ∆SxσS1 + σL1 σI + σL2 ∆SxσS2

))
JΦx +

(
ΨβρΦσL2

)
JΨΦ

]
ds = 0

The following partial differential equation is obtained by differentiating both sides:
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[
Jt +

(
∆Sxµ+ ∆IxσIθ

I + xr −∆Sxr + Y (s)− L(s)
)
Jx

+
(
ΨF − Y (s)

)
JΨ +

(
Φq − L(s)

)
JΦ

+
1

2

(
(∆S)2x2

(
(σS1 )2 + (σS2 )2

)
+
(
2∆SxσS1 ∆IxσI

)
+
(
(∆I)2x2(σI)

2
))
Jxx

+
1

2

(
Ψ2β2

)
JΨΨ +

1

2
Φ2
(
(σL1 )2 + (σL2 )2

)
JΦΦ +

(
Ψβρ∆SxσS2

)
JΨx

+
(
Φ
(
σL1 ∆SxσS1 + σL1 σI + σL2 ∆SxσS2

))
JΦx +

(
ΨβρΦσL2

)
JΨΦ

]
= 0

Consider the value function:

V (t, x,Ψ,Φ) = sup
∆
J(t, x,Ψ,Φ,∆)

where J is as in equation (4.28).

The value function V satisfies:

Jt + sup
∆

[
∆SxµUx + ∆IxσIθ

IUx + xrUx −∆SxrUx + Y (t)Ux − L(t)Ux

+ΨFUΨ − Y (s)UΨ + ΦqUΦ − L(t)UΦ

+
1

2
(∆S)2x2(σS1 )2Uxx + +

1

2
(∆S)2x2(σS2 )2Uxx + ∆SxσS1 ∆IxσIUxx +

1

2
(∆I)2x2(σI)

2Uxx

+
1

2
Ψ2β2UΨΨ +

1

2
Φ2(σL1 )2UΦΦ +

1

2
Φ2(σL2 )2UΦΦ + Ψβρ∆SxσS2UΨx
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+ΦσL1 ∆SxσS1UΦx + ΦσL1 σIUΦx + ΦσL2 ∆SxσS2UΦx + ΨβρΦσL2 UΨΦ

]
= 0

Let our utility function to be:

U(T, ν) =
1

γ
νγ

We look at the function of ∆ which is:

A(∆) = ∆SxµUx + ∆IxσIθ
IUx −∆Sxrux

+
1

2
(∆S)2x2(σS1 )2Uxx +

1

2
(∆S)2x2(σS2 )2Uxx + ∆SxσS1 ∆IxσIUxx

+
1

2
(∆I)2x2(σI)

2Uxx + Ψβρ∆SxσS2UΨx + ΦσL1 ∆SxσS1UΦx

+ΦσL2 ∆SxσS2UΦx (4.30)

We differentiate U(ν) and substitute in (4.30) to get:

A(∆) = ∆Sxµ
(
(ν)ν−1

)
+ ∆IxσIθ

I
(
(ν)ν−1

)
−∆Sxr

(
(ν)ν−1

)
+

1

2
(∆S)2x2(σS1 )2

(
(γ − 1).νγ−2

)
+

1

2
(∆S)2x2(σS2 )2

(
(γ − 1).νγ−2

)
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+∆SxσS1 ∆IxσI
(
(γ − 1).νγ−2

)
+

1

2
(∆I)2x2(σI)

2
(
(γ − 1).νγ−2

)
+Ψβρ∆SxσS2

(
(γ − 1).νγ−2

)
+ ΦσL1 ∆SxσS1

(
(γ − 1).νγ−2

)
+ΦσL2 ∆SxσS2 ((γ − 1).νγ−2

)
(4.31)

Because A(∆) is a quassi-concave function of ∆, to obtain its maximum we differen-

tiate (4.31) with respect to ∆I and ∆S:

∂A(∆)

∂∆I
= xσIθ

I(ν)γ−1 + ∆Ix2(σI)
2(γ − 1)νγ−2

+∆SxσS1 xσI(γ − 1)νγ−2 (4.32)

and

∂A(∆)

∂∆S
= xµ(ν)ν−1 − xr(ν)γ−1 + ∆Sx2(σS1 )2(γ − 1)νγ−2

+∆Sx2(σS2 )2(γ − 1)νγ−2 + xσS1 ∆IxσI(γ − 1)νγ−2

+ΨβρxσS2 (γ − 1)νγ−2 + ΦσL1 xσ
S
1 (γ − 1)νγ−2

+ΦσL2 xσ
S
2 ((γ − 1).νγ−2

)
(4.33)

Next, we equate equations (4.32) and (4.33) to zero, and solve for ∆I and ∆S respec-

tively.
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Solving for ∆I :

xσIθ
I(ν)γ−1 + ∆Ix2(σI)

2(γ − 1)νγ−2 + ∆SxσS1 xσI(γ − 1)νγ−2 = 0

∆Ix2(σI)
2(γ − 1)νγ−2 = −xσIθI(ν)γ−1 −∆SxσS1 xσI(γ − 1)νγ−2

∆I =
−xσIθI(ν)γ−1 −∆SxσS1 xσI(γ − 1)νγ−2

x2(σI)2(γ − 1)νγ−2

∆I =

−xσI
(
θI(ν)γ−1 + ∆SσS1 x(γ − 1)νγ−2

)
x2(σI)2(γ − 1)νγ−2

∆I =

−
(
θI(ν)γ−1 + ∆SσS1 x(γ − 1)νγ−2

)
xσI(γ − 1)νγ−2

∆I = − θI(ν)γ−1

xσI(γ − 1)νγ−2
− ∆SσS1 x(γ − 1)νγ−2

xσI(γ − 1)νγ−2

∆I = − θIν

xσI(γ − 1)
− ∆SσS1

σI

Solving for ∆S:
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xµ(ν)ν−1 − xr(ν)γ−1 + ∆Sx2(σS1 )2(γ − 1)νγ−2 + ∆Sx2(σS2 )2(γ − 1)νγ−2

+xσS1 ∆IxσI(γ − 1)νγ−2 + ΨβρxσS2 (γ − 1)νγ−2 + ΦσL1 xσ
S
1 (γ − 1)νγ−2

+ΦσL2 xσ
S
2 ((γ − 1).νγ−2 = 0

∆Sx2(σS1 )2(γ − 1)νγ−2 + ∆Sx2(σS2 )2(γ − 1)νγ−2 = −xµ(ν)ν−1 + xr(ν)γ−1

−xσS1 ∆IxσI(γ − 1)νγ−2 −ΨβρxσS2 (γ − 1)νγ−2 − ΦσL1 xσ
S
1 (γ − 1)νγ−2 − ΦσL2 xσ

S
2 ((γ − 1).νγ−2

∆S

(
x2(σS1 )2(γ − 1)νγ−2 + x2(σS2 )2(γ − 1)νγ−2

)
= −xµ(ν)ν−1 + xr(ν)γ−1

−xσS1 ∆IxσI(γ − 1)νγ−2 −ΨβρxσS2 (γ − 1)νγ−2 − ΦσL1 xσ
S
1 (γ − 1)νγ−2 − ΦσL2 xσ

S
2 ((γ − 1).νγ−2

∆S

[
x2(γ − 1)νγ−2

(
(σS1 )2 + (σS2 )2

)]
= −xµ(ν)ν−1 + xr(ν)γ−1

−xσS1 ∆IxσI(γ − 1)νγ−2 −ΨβρxσS2 (γ − 1)νγ−2 − ΦσL1 xσ
S
1 (γ − 1)νγ−2 − ΦσL2 xσ

S
2 ((γ − 1).νγ−2
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∆S =
−xµ(ν)ν−1 + xr(ν)γ−1 − xσS1 ∆IxσI(γ − 1)νγ−2

x2(γ − 1)νγ−2

(
(σS1 )2 + (σS2 )2

)
+
−ΨβρxσS2 (γ − 1)νγ−2 − ΦσL1 xσ

S
1 (γ − 1)νγ−2 − ΦσL2 xσ

S
2 ((γ − 1).νγ−2

x2(γ − 1)νγ−2

(
(σS1 )2 + (σS2 )2

)

∆S =
−µ(ν)ν−1

x(γ − 1)νγ−2

(
(σS1 )2 + (σS2 )2

)
+

r(ν)γ−1

x(γ − 1)νγ−2

(
(σS1 )2 + (σS2 )2

)
+

−σS1 ∆IσI(γ − 1)νγ−2

(γ − 1)νγ−2

(
(σS1 )2 + (σS2 )2

)
+

−ΨβρσS2 (γ − 1)νγ−2

x(γ − 1)νγ−2

(
(σS1 )2 + (σS2 )2

)
+
−ΦσL1 σ

S
1 (γ − 1)νγ−2 − ΦσL2 σ

S
2 (γ − 1)νγ−2

x(γ − 1)νγ−2

(
(σS1 )2 + (σS2 )2

)

∆S =
−µ(ν)

x(γ − 1)(

(
σS1 )2 + (σS2 )2

)
+

r(ν)

x(γ − 1)

(
(σS1 )2 + (σS2 )2

)
+

−σS1 ∆IσI(
(σS1 )2 + (σS2 )2

)
+

−ΨβρσS2

x

(
(σS1 )2 + (σS2 )2

)
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+
−ΦσL1 σ

S
1 − ΦσL2 σ

S
2

x

(
(σS1 )2 + (σS2 )2

)

∆S =
−ΨβρσS2 − ΦσL1 σ

S
1 − ΦσL2 σ

S
2

x

(
(σS1 )2 + (σS2 )2

)
+

−σS1 ∆IσI(
(σS1 )2 + (σS2 )2

) +
(−µ+ r)ν

x(γ − 1)

(
(σS1 )2 + (σS2 )2

) (4.34)

Therefore,

∆I = − θIν

xσI(γ − 1)
− ∆SσS1

σI
(4.35)

Take (4.35) into (4.34):

∆S =
−ΨβρσS2 − ΦσL1 σ

S
1 − ΦσL2 σ

S
2

x

(
(σS1 )2 + (σS2 )2

)

+
−σS1

[
− θIν

xσI(γ−1)
− ∆SσS1

σI

]
σI(

(σS1 )2 + (σS2 )2

) +
(−µ+ r)ν

x(γ − 1)

(
(σS1 )2 + (σS2 )2

)

∆S =
−ΨβρσS2 − ΦσL1 σ

S
1 − ΦσL2 σ

S
2

x

(
(σS1 )2 + (σS2 )2

)
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+
−σS1

[
− θIν

x(γ−1)
−∆SσS1

](
(σS1 )2 + (σS2 )2

) +
(−µ+ r)ν

x(γ − 1)

(
(σS1 )2 + (σS2 )2

)

∆S =

[
−ΨβρσS2 − ΦσL1 σ

S
1 − ΦσL2 σ

S
2

]
(γ − 1) +

(
− σS1

[
− θIν

x(γ−1)
−∆SσS1

]
x(γ − 1)

)
+ (−(µ+ r)ν)

x(γ − 1)

(
(σS1 )2 + (σS2 )2

)

∆S =

[
−ΨβρσS2 − ΦσL1 σ

S
1 − ΦσL2 σ

S
2

]
(γ − 1) + σS1 θ

Iν + ∆S(σS1 )2x(γ − 1) + (−(µ+ r)ν)

x(γ − 1)

(
(σS1 )2 + (σS2 )2

)

∆S

[
x(γ − 1)

(
(σS1 )2 + (σS2 )2

)]
=

[
−ΨβρσS2 − ΦσL1 σ

S
1 − ΦσL2 σ

S
2

]
(γ − 1) + σS1 θ

Iν

+∆S(σS1 )2x(γ − 1) + (−(µ+ r)ν)

∆S

[
x(γ − 1)

(
(σS1 )2 + (σS2 )2

)]
−∆S(σS1 )2x(γ − 1) =

[
−ΨβρσS2 − ΦσL1 σ

S
1 − ΦσL2 σ

S
2

]
(γ − 1)

+σS1 θ
Iν + (−(µ+ r)ν)

∆S

[
x(γ−1)

](
(σS1 )2+(σS2 )2−(σS1 )2

)
=
[
−ΨβρσS2−ΦσL1 σ

S
1−ΦσL2 σ

S
2

]
(γ−1)+σS1 θ

Iν+(−(µ+r)ν)
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∆S =

[
−ΨβρσS2 − ΦσL1 σ

S
1 − ΦσL2 σ

S
2

]
(γ − 1) + σS1 θ

Iν + (−(µ+ r)ν)[
x(γ − 1)

](
(σS2 )2

) (4.36)

Take (4.36) into (4.35):

∆I = − θIν

xσI(γ − 1)
−

[[
−ΨβρσS2−ΦσL1 σ

S
1−ΦσL2 σ

S
2

]
(γ−1)+σS1 θ

Iν+(−(µ+r)ν)[
x(γ−1)

](
(σS2 )2

) ]
σS1

σI

and

∆S =

[
−ΨβρσS2 − ΦσL1 σ

S
1 − ΦσL2 σ

S
2

]
(γ − 1) + σS1 θ

Iν + (−(µ+ r)ν)[
x(γ − 1)

](
(σS2 )2

)

∆I

∆S

 =


− θIν
xσI(γ−1)

−

[[
−ΨβρσS2 −ΦσL1 σ

S
1 −ΦσL2 σ

S
2

]
(γ−1)+σS1 θ

Iν(t)+(−(µ+r)ν(t))[
x(γ−1)

](
(σS2 )2−(σS1 )2

) ]
σS1

σI[
−ΨβρσS2−ΦσL1 σ

S
1−ΦσL2 σ

S
2

]
(γ−1)+σS1 θ

Iν(t)+(−(µ+r)ν(t))[
x(γ−1)

](
(σS2 )2

)



(∆I)∗ = − θIV ∗(t)

X∗σI(γ − 1)
−

[[
−ΨβρσS2−ΦσL1 σ

S
1−ΦσL2 σ

S
2

]
(γ−1)+σS1 θ

IV ∗(t)+(−(µ+r)V ∗(t))[
X∗(γ−1)

](
(σS2 )2

) ]
σS1

σI
(4.37)
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and

(∆S)∗ =

[
−ΨβρσS2 − ΦσL1 σ

S
1 − ΦσL2 σ

S
2

]
(γ − 1) + σS1 θ

IV ∗(t) + (−(µ+ r)V ∗(t))[
X∗(γ − 1)

](
(σS2 )2

)
(4.38)

But,

(∆0)∗ = 1− (∆I)∗ − (∆S)∗

This then implies that:

(∆0)∗ = 1−
[
− θIV ∗(t)

X∗σI(γ − 1)
−

[[
−ΨβρσS2−ΦσL1 σ

S
1−ΦσL2 σ

S
2

]
(γ−1)+σS1 θ

IV ∗(t)+(−(µ+r)V ∗(t))[
X∗(γ−1)

](
(σS2 )2

) ]
σS1

σI

]
−
[[−ΨβρσS2 − ΦσL1 σ

S
1 − ΦσL2 σ

S
2

]
(γ − 1) + σS1 θ

IV ∗(t) + (−(µ+ r)V ∗(t))[
X∗(γ − 1)

](
(σS2 )2

) ]
(4.39)
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Chapter 5

Discussion and Results

5.1 Discussion

In this thesis, we studied the Optimal investment under inflation protection and

optimal portfolio with stochastic wage income and cash outflows. First we derived

the dynamics of the stochastic wage income and stochastic cash outflows. Then we

derived the dynamics of the wealth process,the dynamics of the expected discounted

stochastic wage income process at time t and the expected discounted cash outflows

process at time t. Then, the value of the wealth process of the Investor at time t was

found. Lastly, we calculated the optimal portfolio strategies for the Investor.
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5.1.1 General assumptions

When carrying out this research, some assumptions were needed, and these are:

1. For the stochastic income over time t, α(Yt, t) = αYt and β(Yt, t) = βYt, and the

stochastic wage income follows a geometric Brownian motion with constant volatility

β.

2. The discounted cash outflows follow the geometric Brownian motion defined by a

constant volatility σL = (σL1 , σ
L
2 ).

3.We assumed there were no jumps. That is, we considered the stock price to be

that of a geometric Brownian motion, but in actual fact the jumps exist as the price

changes.

5.2 Results

The value of expected future stochastic wage income process Ψ(t) is proportional to

the instantaneous total stochastic wage income process Y (t). This can be seen by

equation (4.16).

Another observation is that the expected discounted cash process Φ(t) is proportional

to the instantaneous total cash outflows process L(t) and this is seen by (4.20).

The change in wealth of the investor was also obtained and this is seen by equation
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(4.23).

In other words, some of the main results are Proposition 1, Proposition 2 and Propo-

sition 3

The other main results are (4.37), (4.38) and (4.39), that is, the optimal portfolio of

the Investor in the inflation linked bond, in the stock market and in the cash account

respectively, were found.

This work can be extended by using a numerical approach where our formulas which

are being developed can be applied. Also, further developments can be used by using

a different utility function. More general results can be achieved if we assume that

the stock price process are driven by semi-martingales or processes with jumps.
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Chapter 6

Conclusion

In this dissertation, the optimal portfolios with stochastic wag income and stochastic

cash outflows for an Investor were studied. The optimal share of portfolios in stock

and inflation-linked bond depend on stochastic wage income, stochastic cash outflows

and the optimal wealth level of the investment at time t. Also, as the market evolves,

parts of the portfolio values in stock and inflation-linked bond should be transferred

to the cash account. This work can be extended by using a different utility function

and assuming that the stock price process are driven by semi-martingales or processes

with jumps.
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