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Let P(𝑛) = F
2
[𝑥
1
, . . . , 𝑥

𝑛
] be the polynomial algebra in 𝑛 variables 𝑥

𝑖
, of degree one, over the field F

2
of two elements. The mod-2

Steenrod algebraA acts on P(𝑛) according to well known rules. A major problem in algebraic topology is of determiningA+P(𝑛),
the image of the action of the positively graded part ofA. We are interested in the related problem of determining a basis for the
quotient vector space Q(𝑛) = P(𝑛)/A+P(𝑛). Q(𝑛) has been explicitly calculated for 𝑛 = 1, 2, 3, 4 but problems remain for 𝑛 ≥ 5.
Both P(𝑛) = ⨁

𝑑≥0
P𝑑(𝑛) andQ(𝑛) are graded, where P𝑑(𝑛) denotes the set of homogeneous polynomials of degree 𝑑. In this paper,

we show that if 𝑢 = 𝑥
𝑚1

1
⋅ ⋅ ⋅ 𝑥
𝑚𝑛−1

𝑛−1
∈ P𝑑

󸀠

(𝑛−1) is an admissiblemonomial (i.e., 𝑢meets a criterion to be in a certain basis forQ(𝑛−1)),
then, for any pair of integers (𝑗, 𝜆), 1 ≤ 𝑗 ≤ 𝑛, and 𝜆 ≥ 0, the monomial ℎ𝜆

𝑗
(𝑢) = 𝑥

𝑚1

1
⋅ ⋅ ⋅ 𝑥
𝑚𝑗−1

𝑗−1
𝑥
2
𝜆−1

𝑗
𝑥
𝑚𝑗

𝑗+1
⋅ ⋅ ⋅ 𝑥
𝑚𝑛−1

𝑛
∈ P𝑑

󸀠
+(2𝜆−1)

(𝑛) is
admissible. As an application we consider a few cases when 𝑛 = 5.

1. Introduction

For 𝑛 ≥ 1 let P(𝑛) be the mod-2 cohomology group of the 𝑛-
fold product ofR𝑃∞ with itself. Then P(𝑛) is the polynomial
algebra

P (𝑛) = F2 [𝑥1, . . . , 𝑥𝑛] (1)
in 𝑛 variables 𝑥

𝑖
, each of degree 1, over the field F2 of two

elements.
The mod-2 Steenrod algebra A is the graded associative

algebra generated over F2 by symbols Sq𝑖 for 𝑖 ≥ 0, called
Steenrod squares subject to the Adem relations [1] and Sq0 =

1. Let P𝑑(𝑛) denote the homogeneous polynomials of degree
𝑑. The action of the Steenrod squares Sq𝑖 : P𝑑(𝑛) → P𝑑+𝑖(𝑛)
is determined by the formula

Sq𝑖 (𝑢) =

{{{{

{{{{

{

𝑢, 𝑖 = 0,

𝑢
2, deg (𝑢) = 𝑖,

0, deg (𝑢) < 𝑖,

(2)

and the Cartan formula

Sq𝑖 (𝑢V) =

𝑖

∑
𝑟=0

Sq𝑟 (𝑢) Sq𝑖−𝑟 (V) . (3)

A polynomial 𝑢 ∈ P𝑑(𝑛) is said to be hit if it is in the image of
the action ofA on P(𝑛), that is, if

𝑢 = ∑
𝑖>0
Sq𝑖 (𝑢

𝑖
) , (4)

for some 𝑢
𝑖
∈ P(𝑛) of degree 𝑑 − 𝑖. Let A+P(𝑛) denote the

subspace of all hit polynomials. The problem of determining
A+P(𝑛) is called the hit problem and has been studied
by several authors [2–4]. We are interested in the related
problem of determining a basis for the quotient vector space

Q (𝑛) =
P (𝑛)

A+P (𝑛)
(5)
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which has also been studied by several authors [5–8]. Some of
the motivation for studying these problems is mentioned in
[9]. It stems from the Peterson conjecture proved in [4] and
various other sources [10, 11].

The following result is useful for determining A-
generators for P(𝑛). Let 𝛼(𝑚) denote the number of digits 1
in the binary expansion of𝑚.

In [4, Theorem 1], Wood proved the following.

Theorem 1 (Wood [4]). Let 𝑢 ∈ P(𝑛) be a monomial of degree
𝑑. If 𝛼(𝑛 + 𝑑) > 𝑛, then 𝑢 is hit.

Thus, Q𝑑(𝑛) is zero unless 𝛼(𝑛 + 𝑑) ≤ 𝑛 or, equivalently,
unless 𝑑 can be written in the form 𝑑 = ∑

𝑛

𝑖=1(2
𝜆
𝑖 − 1), where

𝜆
𝑖
≥ 0. Thus, Q𝑑(𝑛) ̸= 0 only if P𝑑(𝑛) contains monomials

V = 𝑥2𝜆1−1
1 ⋅ ⋅ ⋅ 𝑥2𝜆𝑛−1

𝑛
called spikes. For convenience, we will

assume that 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝑛

≥ 0. We, in addition, will
consider a special one when 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑠
≥ 0 and

𝜆
𝑗−1 = 𝜆

𝑗
only if 𝑗 = 𝑠 or 𝜆

𝑗+1 = 0. In this case V is called a
minimal spike.

Q(𝑛) has been explicitly calculated by Peterson [8] for 𝑛 =

1, 2, by Kameko in his thesis [5] for 𝑛 = 3, and independently
by Kameko [6] and Sum [7] for 𝑛 = 4. In this work we will,
unless otherwise stated, be concerned with a basis for Q(𝑛)

consisting of “admissiblemonomials,” as defined below.Thus,
when we write 𝑢 ∈ Q𝑑(𝑛) we mean that 𝑢 is an admissible
monomial of degree 𝑑.

We define what it means for a monomial 𝑏 = 𝑥
𝑒1
1 ⋅ ⋅ ⋅ 𝑥𝑒𝑛

𝑛
∈

P(𝑛) to be admissible. Write 𝑒
𝑖

= ∑
𝑗≥0 𝛼𝑗(𝑒𝑖)2

𝑗 for the
binary expansion of each exponent 𝑒

𝑖
. The expansions are

then assembled into a matrix 𝛽(𝑏) = (𝛼
𝑗
(𝑒
𝑖
)) of digits 0 or

1 with 𝛼
𝑗
(𝑒
𝑖
) in the (𝑖, 𝑗)th position of the matrix.

We then associate with 𝑏 two sequences

𝑤 (𝑏) = (𝑤0 (𝑏) , 𝑤1 (𝑏) , . . . , 𝑤𝑗 (𝑏) , . . .) ,

𝑒 (𝑏) = (𝑒1, 𝑒2, . . . , 𝑒𝑛) ,

(6)

where 𝑤
𝑗
(𝑏) = ∑

𝑛

𝑖=1 𝛼𝑗(𝑒𝑖) for each 𝑗 ≥ 0. 𝑤(𝑏) is called
the weight vector of the monomial 𝑏 and 𝑒(𝑏) is called the
exponent vector of the monomial 𝑏.

Given two sequences 𝑝 = (𝑢0, 𝑢1, . . . , 𝑢𝑙, 0, . . .) and 𝑞 =

(V0, V1, . . . , V𝑙, 0, . . .), we say 𝑝 < 𝑞 if there is a positive integer
𝑘 such that 𝑢

𝑖
= V
𝑖
for all 𝑖 < 𝑘 and 𝑢

𝑘
< V
𝑘
. We are now in a

position to define an order relation on monomials.

Definition 2. Let 𝑎, 𝑏 bemonomials in P(𝑛). We say that 𝑎 < 𝑏

if one of the following holds:

(1) 𝑤(𝑎) < 𝑤(𝑏),

(2) 𝑤(𝑎) = 𝑤(𝑏) and 𝑒(𝑎) < 𝑒(𝑏).

Note that the order relation on the set of sequences is the
lexicographical one.

Following Kameko [5] we define the following.

Definition 3. A monomial 𝑏 ∈ P(𝑛) is said to be inadmissible
if there exist monomials 𝑏1, 𝑏2, . . . , 𝑏𝑟 ∈ P(𝑛) with 𝑏

𝑗
< 𝑏 for

each 𝑗, 1 ≤ 𝑗 ≤ 𝑟, such that

𝑏 ≡ (

𝑟

∑
𝑗=1

𝑏
𝑗
) mod A

+P (𝑛) . (7)

𝑏 is said to be admissible if it is not inadmissible.

Clearly the set of all admissible monomials in P(𝑛) form
a basis forQ(𝑛).

Let 𝑢 = 𝑥
𝑚1
1 ⋅ ⋅ ⋅ 𝑥

𝑚
𝑛−1
𝑛−1 ∈ P(𝑛 − 1) be a mono-

mial of degree 𝑑󸀠. Given any pair of integers (𝑗, 𝜆), 1 ≤

𝑗 ≤ 𝑛, 𝜆 ≥ 0, we will write ℎ𝜆
𝑗
(𝑢) for the monomial

𝑥
𝑚1
1 ⋅ ⋅ ⋅ 𝑥

𝑚
𝑗−1
𝑗−1 𝑥2𝜆−1
𝑗

𝑥
𝑚
𝑗

𝑗+1 ⋅ ⋅ ⋅ 𝑥
𝑚
𝑛−1
𝑛

∈ P𝑑
󸀠
+(2𝜆−1)(𝑛). Our main

result is the following.

Theorem 4. Let 𝑢 ∈ P(𝑛 − 1) be a monomial of degree 𝑑
󸀠,

where 𝛼(𝑑󸀠 + 𝑛 − 1) ≤ 𝑛 − 1. If 𝑢 is admissible, then, for each
pair of integers (𝑗, 𝜆), 1 ≤ 𝑗 ≤ 𝑛, 𝜆 ≥ 0, ℎ𝜆

𝑗
(𝑢) is admissible.

Our proof of Theorem 4 is deferred until Section 3.
As a corollary toTheorem 4, suppose that𝜆 is fixed so that

𝑑󸀠 is also fixed. Let 𝑥2𝜆1−1
1 ⋅ ⋅ ⋅ 𝑥2𝜆𝑛−2−1

𝑛−2 be the minimal spike of
degree 𝑑󸀠. If 𝜆 > 𝜆1, then consider the following.

Corollary 5. Q𝑑(𝑛) has a subspace isomorphic to⨁𝑛
𝑖=1Q
𝑑
󸀠

(𝑛−

1).

As ourmain application of the theoremwe consider a few
cases when 𝑛 = 5.The relevant result in this case isTheorem 6
stated below. To explain Table 1 we recall that, given an integer
𝑑 such that 𝛼(𝑛 + 𝑑) ≤ 𝑛, we let

𝐶 (𝑛, 𝑑) = {𝜆 ≥ 0 | 𝛼 (𝑑 − (2𝜆 − 1) + 𝑛 − 1) ≤ 𝑛 − 1} . (8)

Then given any explicit admissible monomial basis forQ(𝑛 −

1) onemay computeL𝐵(𝑛, 𝑑), the dimension of the subspace
of Q𝑑(𝑛) generated by all monomials of the form ℎ𝜆

𝑗
(𝑢) ∈

P𝑑(𝑛), 𝜆 ∈ 𝐶(𝑛, 𝑑) and 𝑢 ∈ Q𝑑−(2
𝜆
−1)(𝑛 − 1). In general

L𝐵(𝑛, 𝑑) ≤ dim(Q𝑑(𝑛)).
In [7] Sum gives an explicit admissible monomial basis

forQ(4). In this paper we make use of his results to compute
L𝐵(5, 𝑑), 1 ≤ 𝑑 ≤ 30, and compare these values with
dim(Q𝑑(5)) in the given range.The results are given inTable 1.
The table is incomplete as not all values for dim(Q𝑑(5)) are
known in the given range. While in general it is true that
L𝐵(5, 𝑑) ≤ dim(Q𝑑(5)), there are cases, even nontrivial,
where equality holds. This is demonstrated with the aid
of known results for dim(Q𝑑(5)) (cited in Table 1) but we
will show later that the same conclusions can be reached
independently.

Theorem 6. Table 1 gives lower bounds, L𝐵(5, 𝑑), for the
dimension of Q𝑑(5), 1 ≤ 𝑑 ≤ 30.
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Table 1

𝑑 dim(Q𝑑(5)) Reference L𝐵(5, 𝑑)
1 5 5
2 10 10
3 25 25
4 45 [12] 45
5 46 46
6 74 74
7 110 110
8 174 [13] 174
9 191 191
10 280 275
11 315 [14] 313
12 190 [12] 190
13 — 246
14 — 295
15 432 [15] 384
16 — 414
17 — 538
18 — 673
19 — 778
20 — 591
21 — 741
22 — 780
23 — 916
24 — 908
25 — 974
26 1024 [16] 985
27 315 313
28 480 [12] 480
29 — 450
30 — 763

While this approach remains to be explored, in general
these test results suffice for our purpose in this paper and we
hope tomake amore general account in subsequent work.We
are thus only required to proveTheorem 4.

Our work is organized as follows. In Section 2, we recall
some results on admissible monomials and hit monomials in
P(𝑛). In Section 3, we proveTheorem 4.We conclude with an
application of the theorem in Section 4.

2. Preliminaries

In this section we recall some results in Kameko [17] and
Singer [3] on admissible monomials and hit monomials in
P(𝑛).

The following theorem has been used to great effect by
Kameko and Sum in computing a basis for Q(3) and Q(4),
respectively.

Theorem7 (Kameko [5] and Sum [18]). Let 𝑎, 𝑏 bemonomials
in P(𝑛) such that 𝑤

𝑗
(𝑎) = 0 for 𝑗 > 𝑟 > 0. If 𝑏 is inadmissible,

then 𝑎𝑏2
𝑟

is also inadmissible.

Up to permutation of representatives weight order pro-
vides a total order relation amongst spikes in a given degree.

It is easy to show that a spike V = 𝑥
2𝜆1−1
1 ⋅ ⋅ ⋅ 𝑥2𝜆𝑛−1

𝑛
∈ P𝑑(𝑛)

is a minimal spike if its weight order is minimal with respect
to other spikes of degree 𝑑. We say V is a maximal spike if its
weight order ismaximal with respect to other spikes of degree
𝑑. In [17, Theorem 4.2] Kameko proved the following.

Theorem 8 (Kameko). Let 𝑑 be a positive integer and let V be
the minimal spike of degree 2𝑑 + 𝑛. Define a linear mapping,
𝑓 : P𝑑(𝑛) → P2𝑑+𝑛(𝑛), by

𝑓 (𝑥
𝑚1
1 ⋅ ⋅ ⋅ 𝑥

𝑚
𝑛

𝑛
) = 𝑥

2𝑚1+1
1 ⋅ ⋅ ⋅ 𝑥

2𝑚
𝑛
+1

𝑛
. (9)

If 𝑤0(V) = 𝑛, then f induces an isomorphism 𝑓
∗

: Q𝑑(𝑛) →

Q2𝑑+𝑛(𝑛).

FromWood’s theorem and the above result of Kameko the
problem of determiningA-generators for P(𝑛) is reduced to
the cases for which 𝑤0(V) ≤ 𝑛 − 1 whenever V is a minimal
spike of a given degree 𝑑.

We recall the following result of Singer on hit polynomials
in P(𝑛). In [3, Theorem 1.2], Singer proved the following.

Theorem 9 (Singer). Let 𝑏 ∈ P(𝑛) be a monomial of degree 𝑑,
where 𝛼(𝑛 + 𝑑) ≤ 𝑛. Let V be the minimal spike of degree 𝑑. If
𝑤(𝑏) < 𝑤(V), then 𝑏 is hit.

We will require the following stronger version of
Theorem 9. Let 𝑏 be a monomial of degree 𝑑. For 𝑙 > 0 define
𝑑
𝑙
(𝑏) to be the integer 𝑑

𝑙
(𝑏) = ∑

𝑗≥𝑙
𝑤
𝑗
(𝑏)2𝑗−𝑙.

In [2, Theorem 1.2], Silverman proved the following.

Theorem 10 (Silverman). Let 𝑏 ∈ P(𝑛) be a monomial of
degree 𝑑, where 𝛼(𝑛 + 𝑑) ≤ 𝑛. Let V be the minimal spike of
degree 𝑑. If 𝑑

𝑙
(𝑏) > 𝑑

𝑙
(V) for some 𝑙 ≥ 1, then 𝑏 is hit.

Finally we note that for any element Sq𝑘 ∈ A+ and any
polynomial 𝑢 ∈ P(𝑛) we have

Sq𝑘2
𝜆

(𝑢
2𝜆
) = (Sq𝑘 (𝑢))

2𝜆 (10)

for a given 𝜆 ≥ 0.

3. Proof of Theorem 4

In this section we proveTheorem 4. Our main observation in
this work is made in terms of pairs of integers 𝑗, 𝜆, 1 ≤ 𝑗 ≤ 𝑛,
𝜆 ≥ 0, which determine a monomial ℎ𝜆

𝑗
(𝑢) ∈ P𝑑

󸀠
+(2𝜆−1)

(𝑛)

once a monomial 𝑢 ∈ P𝑑
󸀠

(𝑛 − 1) is given. We first note that if
𝑢 = 𝑥

𝑒1
1 ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝑛−1 , then ℎ𝜆

𝑛
(𝑢) = 𝑥

𝑒1
1 ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝑛−1𝑥

2𝜆−1
𝑛

while, for any
other value of 𝑗, ℎ𝜆

𝑗
(𝑢) is a permutation of ℎ𝜆

𝑛
(𝑢) that replaces

the exponent of 𝑥
𝑗
by 2𝜆 − 1 and those for 𝑥

𝑗+𝑖
, 𝑛 − 𝑗 ≥ 𝑖 ≥ 1,

by 𝑒
𝑗+𝑖−1.Wemay therefore use permutation notation in place

of 𝑗. Let

𝑆 (𝑛) = {𝜎 ∈ 𝑆
𝑛
| 𝜎 (𝑟) < 𝜎 (𝑠) if 𝑟 < 𝑠 < 𝑛} . (11)
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Then |𝑆(𝑛)| = 𝑛 and for each integer 𝑗, 1 ≤ 𝑗 ≤ 𝑛, there exists
𝜎 ∈ 𝑆(𝑛) such that ℎ𝜆

𝑗
(𝑥
𝑒1
1 ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝑛−1) = 𝑥

𝑒1
𝜎(1) ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝜎(𝑛−1)𝑥

2𝜆−1
𝜎(𝑛)

whenever𝑥𝑒11 ⋅ ⋅ ⋅ 𝑥
𝑒
𝑛−1
𝑛−1 ∈ P𝑑

󸀠

(𝑛−1). For convenience of presen-
tationwewill write ℎ𝜆

𝜎
(𝑥
𝑒1
1 ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝑛−1) in place of ℎ

𝜆

𝑗
(𝑥
𝑒1
1 ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝑛−1).

Proof of Theorem 4. Suppose that 𝑢 = 𝑥
𝑒1
1 ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝑛−1 ∈ P(𝑛 − 1)

is a monomial of degree 𝑑󸀠, where 𝛼(𝑑󸀠 + 𝑛 − 1) ≤ 𝑛 − 1. Let
𝜆 ≥ 0 be an integer. We must show that, for any permutation
𝜎 ∈ 𝑆(𝑛), ℎ𝜆

𝜎
(𝑢) is admissible whenever 𝑢 is admissible. Put

𝑑 = 𝑑󸀠 + 2𝜆 − 1.

We first note that, for each 𝜎 ∈ 𝑆(𝑛), every monomial in
ℎ𝜆
𝜎
(P(𝑛 − 1)) is of the form

𝑥
𝑚1
𝜎(1) ⋅ ⋅ ⋅ 𝑥

𝑚
𝑛−1
𝜎(𝑛−1)𝑥

2𝜆−1
𝜎(𝑛)

. (12)

Thus, if Sq𝑘 ∈ A+ and 𝑤 is a monomial in P𝑑−𝑘(𝑛) for which
Sq𝑘(𝑤) contains a term belonging to ℎ𝜆

𝜎
(P𝑑
󸀠

(𝑛 − 1)), then 𝑤

must be of the form

𝑥
𝑒1
𝜎(1) ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝜎(𝑛−1)𝑥

2𝜆−1
𝜎(𝑛)

, (13)

for some𝑥𝑒11 ⋅ ⋅ ⋅ 𝑥
𝑒
𝑛−1
𝑛−1 ∈ P𝑑

󸀠
−𝑘(𝑛−1).Thismust be the case since

for any pair of positive integers 𝜆, 𝑖 there exists no integer 𝑡

such that Sq𝑖(𝑥𝑡) = 𝑥2𝜆−1. By the Cartan formula Sq𝑘(𝑤)may
be written in the form

Sq𝑘 (𝑥𝑒1
𝜎(1) ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝜎(𝑛−1)) 𝑥

2𝜆−1
𝜎(𝑛)

+∑
𝑡≥1

Sq𝑘−𝑡 (𝑥𝑒1
𝜎(1) ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝜎(𝑛−1)) Sq

𝑡
(𝑥

2𝜆−1
𝜎(𝑛)

) .
(14)

For a given permutation 𝜎 ∈ 𝑆(𝑛) write

P𝑑 (𝑛) = P(𝑑,𝜎) (𝑛)⨁ℎ
𝜆

𝜎
(P𝑑
󸀠

(𝑛 − 1)) , (15)

where P(𝑑,𝜎)(𝑛) is the complement of ℎ𝜆
𝜎
(P𝑑
󸀠

(𝑛 − 1)) in P𝑑(𝑛)
and let 𝜋

𝜎
denote the projection

𝜋
𝜎
: P𝑑 (𝑛) 󳨀→ ℎ

𝜆

𝜎
(P𝑑
󸀠

(𝑛 − 1)) (16)

of P𝑑(𝑛) onto ℎ𝜆
𝜎
(P𝑑
󸀠

(𝑛 − 1)) with respect to this splitting.
The assignment,

ℎ
𝜆

𝜎
: Sq𝑘 (𝑥𝑒11 ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝑛−1)

󳨃󳨀→ Sq𝑘 (𝑥𝑒1
𝜎(1) ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝜎(𝑛−1)) 𝑥

2𝜆−1
𝜎(𝑛)

,

(17)

gives a bijection between

A
+P (𝑛 − 1) ∩P𝑑

󸀠

(𝑛 − 1) ,

𝜋
𝜎
(A
+P (𝑛) ∩P𝑑 (𝑛)) .

(18)

Thus, for each 𝜎 ∈ 𝑆(𝑛), we can think of ℎ𝜆
𝜎
as having an

inverse

𝑔
𝜆

𝜎
: 𝜋
𝜎
(P𝑑 (𝑛)) 󳨀→ P𝑑

󸀠

(𝑛 − 1) . (19)

Now, let 𝑢 ∈ Q𝑑
󸀠

(𝑛 − 1). Then, ℎ𝜆
𝜎
(𝑢) is an element of

ℎ𝜆
𝜎
(P𝑑
󸀠

(𝑛 − 1)). Thus, any hit polynomial that has ℎ𝜆
𝜎
(𝑢) as

a term is a sum of polynomial expressions of the form (14).
Proceeding by contraposition, suppose that ℎ𝜆

𝜎
(𝑢) is inadmis-

sible; that is, it is not an element of Q𝑑(𝑛). Then we can find
a polynomial in which modulo image of the action, ℎ𝜆

𝜎
(𝑢), is

a sum of monomials of the form (𝑥
𝑚1
𝜎(1) ⋅ ⋅ ⋅ 𝑥

𝑚
𝑛−1
𝜎(𝑛−1))𝑥

2𝜆−1
𝜎(𝑛)

plus
error terms Sq𝑘−𝑡(𝑥𝑒1

𝜎(1) ⋅ ⋅ ⋅ 𝑥
𝑒
𝑛−1
𝜎(𝑛−1))Sq

𝑡(𝑥2𝜆−1
𝜎(𝑛)

) all of order lower
than that of ℎ𝜆

𝜎
(𝑢). Since in this event the error terms are of no

consequence (in terms of determining whether 𝑢 is admissi-
ble or not) we may as well restrict ourselves to that part of the
polynomial which consists of terms belonging to 𝜋

𝜎
(P𝑑(𝑛)),

that is, to the image of ℎ𝜆
𝜎
. But the mapping ℎ𝜆

𝜎
is injective

and preserves the order of monomials, so by considering its
inverse 𝑔𝜆

𝜎
we see that 𝑢must also be inadmissible.

Proof of Corollary 5. We must show that if 𝜆 is fixed and is
greater than 𝜆1, then for any permutation 𝜎 ∈ 𝑆(𝑛) we have
𝑢 ∈ Q𝑑

󸀠

(𝑛 − 1) if and only if ℎ𝜆
𝜎
(𝑢) ∈ Q𝑑(𝑛), or, by virtue

of Theorem 4, that we have 𝑢 admissible whenever ℎ𝜆
𝜎
(𝑢) is

admissible. But any hit polynomial which has ℎ𝜆
𝜎
(𝑢) as a term

is generated by polynomial expressions of the form (14) so it
suffices to show that an error term in each such polynomial
expression,

Sq𝑘−𝑡 (𝑥𝑒1
𝜎(1) ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛−1
𝜎(𝑛−1)) Sq

𝑡
(𝑥

2𝜆−1
𝜎(𝑛)

) , (20)

is either hit or of lower weight order than that of ℎ𝜆
𝜎
(𝑢). But if

V = 𝑥2𝜆1−1
1 ⋅ ⋅ ⋅ 𝑥2𝜆𝑛−2−1

𝑛−2 is the minimal spike of degree 𝑑󸀠, 𝜆 >

𝜆1, and 𝑏 is a term in a polynomial expression of the form
(20), then 𝑑

𝑙
(𝑏) > 𝑑

𝑙
(V) for 𝑙 = 𝜆1 and so by Theorem 10 𝑏

is hit. The proof is then completed by noting that if 𝜆 > 𝜆1,
then the subspace of P𝑑(𝑛) spanned by ⋃

𝜎
ℎ𝜆
𝜎
(P𝑑
󸀠

(𝑛 − 1)) is
a direct summand ⨁

𝜎
ℎ𝜆
𝜎
(P𝑑
󸀠

(𝑛 − 1)) of P𝑑(𝑛) isomorphic to
⨁
𝑛

𝑗=1(P
𝑑
󸀠

(𝑛 − 1)) and that the respective subspace of Q𝑑(𝑛)
with basis, the union over all 𝜎 ∈ 𝑆(𝑛) of the sets {ℎ𝜆

𝜎
(𝑢) | 𝑢 ∈

Q𝑑
󸀠

(𝑛 − 1)} inherits this splitting.

4. Application of Theorem 4

We have already applied Theorem 4 to derive the table of
Theorem 6. The table can be extended to all 𝑑 ≥ 0 but in this
work we have limited ourselves to 𝑑 ≤ 30.The purpose of this
restriction is to show that, besides the cases, 1 ≤ 𝑑 ≤ 9, we
also have dim(Q𝑑(5)) = L𝐵(5, 𝑑), when 𝑑 = 12 and 𝑑 = 28.
We also compute dim(Q𝑑(5)) for 𝑑 = 10 and 𝑑 = 11.

To prove all this we require some preliminary observa-
tions. For each 𝑟, 1 ≤ 𝑟 ≤ 𝑛, let

X (𝑟) = Span {𝑥
𝑚1
1 ⋅ ⋅ ⋅ 𝑥

𝑚
𝑟

𝑟
∈P (𝑟) | 𝑚1𝑚2 ⋅ ⋅ ⋅ 𝑚r ̸= 0} . (21)

Then X(𝑟) is anA-submodule of P(𝑟). Let

W (𝑟) =
X (𝑟)

A+X (𝑟)
. (22)
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Then we have a direct sum decomposition

Q (𝑛) ≅

𝑛

⨁
𝑟=1

(
𝑛

𝑟
)

⨁
𝑘=1

W (𝑟) .
(23)

Thus, we have the following.
For any integer 𝑑 > 0,

dim (Q𝑑 (𝑛)) =

𝑛

∑
𝑟=1

(
𝑛

𝑟
) dim (W𝑑 (𝑟)) . (24)

If we were to compute dim(Q𝑑(𝑛)) by an inductive
procedure on the number of variables, then we would only
be required to compute dim(W𝑑(𝑛)) in proceeding from the
case 𝑛− 1 to 𝑛. Apart from spikes all subsequent references to
monomials will mean those belonging to X(𝑛) and, by virtue
of Singer’sTheorem 9, wewill assume they are of weight order
greater than or equal to that of the minimal spike. We note
also that any variation between dim(Q𝑑(𝑛)) and L𝐵(𝑛, 𝑑) is
dependant only on X𝑑(𝑛), since, for any permutation 𝜎 ∈

𝑆(𝑛), whenever 𝑢 ∈ Q𝑑(𝑛 − 1), then choosing 𝜆 = 0, we have
ℎ𝜆
𝜎
(𝑢) ∈ Q𝑑(𝑛).
That dim(Q𝑑(5)) = L𝐵(5, 𝑑), 1 ≤ 𝑑 ≤ 9, 𝑑 = 12 and

𝑑 = 28 will be consequent from the following results.
Let 𝑑 ≥ 0 and suppose that 𝛼(𝑑 + 𝑛) ≤ 𝑛. Suppose there

is a spike V = 𝑥2𝜆1−1
1 ⋅ ⋅ ⋅ 𝑥2𝜆𝑛−1−1

𝑛−1 ∈ P𝑑(𝑛) for which 𝑤0(V) =

𝑛 − 1. We will say that a monomial 𝑎 = 𝑥
𝑚1
1 ⋅ ⋅ ⋅ 𝑥𝑚𝑛

𝑛
∈ X𝑑(𝑛)

of weight order greater than or equal to that of V is associated
with V if, for some pair (𝑖, 𝑗), we have 𝑚

𝑗
= 2𝜆𝑖 − 1 and is

strongly associated with V if 𝑎 is associated with V and if in
addition𝑚

𝑗
≤ 2𝑛−2 − 1 for some 𝑗. Note that a monomial 𝑎 is

associated with a spike V if 𝑎 = ℎ
𝜆
𝑖

𝑗
(𝑢) for some 𝜆

𝑖
and some

monomial 𝑢 ∈ X(𝑛 − 1).
There are cases, dependent on 𝑑, where every monomial

in X𝑑(𝑛) is strongly associated with some spike V of degree 𝑑.
In particular we have the following.

Lemma 11. Let 𝑑 be an integer for which 𝛼(𝑛 + 𝑑) ≤ 𝑛 and
let 𝑎 ∈ X𝑑(𝑛) be a monomial. Suppose that for each spike V =

𝑥2𝜆1−1
1 ⋅ ⋅ ⋅ 𝑥2𝜆𝑛−1−1

𝑛−1 of degree 𝑑 we have 𝜆
𝑛−1 > 0, 𝜆1 ≤ 𝑛 − 1,

𝜆
𝑖
− 𝜆
𝑖+1 ≤ 1, and 𝜆1 − 𝜆

𝑛−1 ≤ 2. Then 𝑎 is strongly associated
with at least one of the spikes of degree 𝑑.

Proof. Suppose that every spike of degree 𝑑 satisfies the
hypothesis of the lemma. We first show that if 𝑎 =

𝑥
𝑚1
1 ⋅ ⋅ ⋅ 𝑥𝑚𝑛

𝑛
∈ X𝑑(𝑛)with𝑤(𝑎) = 𝑤(V) for some spike V then 𝑎

is strongly associated with V. To see this represents the spike
V in matrix form. Without loss of generality assume that row
1 of the matrix has zero entries so that row 𝑖+1, column 𝑗 has
entry 𝛼

𝑗
(2𝜆𝑖 − 1), 1 ≤ 𝑖 ≤ 𝑛 − 1. Note that the columns are

indexed by 𝑗, 0 ≤ 𝑗 ≤ 𝑛 − 2. The matrix form of a monomial
𝑎 of the same weight order as V may be obtained from the
matrix form of V by moving ones from the 𝑛 − 1 rows of V
vertically upwards or downwards to a different row including
row 1. In the worst case scenario we can move at most 𝑛 − 2

ones to row 1 from 𝑛−2 distinct rows of the matrix form of V.
Thus, we must be left with at least one row with consecutive
ones; that is, for any monomial obtained this way we must
have𝑚

𝑗
= 2𝜆𝑖 − 1 for some 𝑗. Since 𝜆1 ≤ 𝑛 − 1, we must have

𝑚
𝑗
≤ 2𝑛−2 − 1 for some 𝑗. Suppose that 𝑤(𝑎) ̸= 𝑤(V) for any

spike V of degree 𝑑. It is easy to see that this is possible only if
there is a spike V for which 𝜆1 − 𝜆

𝑛−1 = 2. We claim that we
must have𝑚

𝑗
= 2𝜆1−1 − 1 for some 𝑗. In this case a monomial

of higher order than V can only be obtained by applying the
splitting 2𝜆+2𝜆 = 2𝜆+1 to 2𝜆𝑖 where 𝜆

𝑖
= 𝜆1.The proof is then

completed by noting that 𝜆1 − 1 ≤ 𝑛 − 2.

We are now in a position to show that dim(Q𝑑(5)) =

L𝐵(5, 𝑑) when 1 ≤ 𝑑 ≤ 9, 𝑑 = 12, and 𝑑 = 28. We will
make use of the following observation.

Suppose that 𝑑 is an integer for which the minimal spike
V of degree 𝑑 satisfies the condition𝑤

𝑜
(V) = 𝑛 − 1. For each 𝑡,

1 ≤ 𝑡 ≤ 𝑛, let 𝑓
𝑡
: P𝑑(𝑛) → P2𝑑+𝑛−1(𝑛) be the linear mapping

given on monomials by

𝑓
𝑡
(𝑥
𝑒1
1 ⋅ ⋅ ⋅ 𝑥

𝑒
𝑛

𝑛
)

= 𝑥
2𝑒1+1
1 ⋅ ⋅ ⋅ 𝑥

2𝑒
𝑡−1+1
𝑡−1 𝑥

2𝑒
𝑡

𝑡
𝑥
2𝑒
𝑡+1+1
𝑡+1 ⋅ ⋅ ⋅ 𝑥

2𝑒
𝑛
+1
𝑛

.
(25)

Then, ignoring monomials of order lower than that of the
minimal spike of degree 2𝑑 + 𝑛 − 1, it is easy to see, by virtue
of (10), that

A
+P (𝑛) ∩P𝑑

󸀠

(𝑛)

= [Sq1 (P (𝑛)) ∩P𝑑
󸀠

(𝑛)]

⊕ [

𝑛

⨁
𝑡=1

𝑓
𝑡
(A
+P (𝑛) ∩P𝑑 (𝑛))] ,

(26)

where 𝑑󸀠 = 2𝑑+𝑛−1 and Sq1(P(𝑛)) is the image of the action
of Sq1 onP(𝑛). In other words the image of Sq𝑘, 𝑘 > 1, is given
by⨁

𝑛

𝑡=1𝑓𝑡(A
+P(𝑛) ∩ P𝑑(𝑛)).

When 𝑛 = 5 then the spikes 𝑥7
1𝑥

7
2𝑥

7
3𝑥

7
4, 𝑥15

1 𝑥7
2𝑥

3
3𝑥

3
4,

of degree 28, satisfy the hypothesis of Lemma 11 and each
monomial of this degree is of the weight order of one of
these spikes. Let 𝑎 = 𝑥

𝑚1
1 𝑥
𝑚2
2 𝑥
𝑚3
3 𝑥
𝑚4
4 𝑥
𝑚5
5 ∈ X28(5). Then

𝑚
𝑗
= 3, 7, 15 for some 𝑗 or equivalently we can find 𝜎 ∈ 𝑆(5)

and a monomial 𝑢 ∈ X(4) such that 𝑎 = ℎ𝜆
𝜎
(𝑢)where 𝜆 = 2, 3,

or 4. To prove that dim(Q28(5)) = L𝐵(5, 28), it is sufficient
to show that whenever 𝑎 is admissible then we can find an
admissible monomial 𝑢 ∈ X(4) and a permutation 𝜎 ∈ 𝑆(5)
such that ℎ𝜆

𝜎
(𝑢) = 𝑎 (𝜆 = 2, 3, or 4). Since 𝑎 is of the form

ℎ𝜆
𝜎
(𝑢) for some 𝑢 ∈ X(4) it is sufficient to show that if 𝑓 is a

hit polynomial that has 𝑎 as a term, then the error terms are
either hit or of lower order than 𝑎. It is easy to see that if 𝑎 is
of the weight order of the spike 𝑥7

1𝑥
7
2𝑥

7
3𝑥

7
4 and Sq𝑘(𝑤) is a hit

polynomial that has 𝑎 as a term, then all the error terms are
of lower weight order than that of 𝑎. Clearly this suffices to
show that every admissible monomial of the weight order of
the spike 𝑥

7
1𝑥

7
2𝑥

7
3𝑥

7
4 is of the form ℎ3

𝜎
(𝑢) for some admissible

monomial 𝑢 ∈ X(4).
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That leaves us with the case where 𝑎 has weight order that
of the minimal spike V = 𝑥15

1 𝑥7
2𝑥

3
3𝑥

3
4. In this case we can find

𝑗, 1 ≤ 𝑗 ≤ 5, such that 𝑚
𝑗
is equal to at least one 3, 7, 15.

If 𝑚
𝑗
= 15 for some 𝑗, then the hypothesis of Corollary 5 is

satisfied if we take 𝑑󸀠 = 13 and 𝜆 = 4; hence, if 𝑎 is admissible
then 𝑎 = ℎ4

𝜎
(𝑢) for some admissible monomial 𝑢 ∈ X13(4).

We may therefore suppose that 𝑚
𝑗

̸= 15 for any 𝑗. We show
that in all cases each element ofA+P(5) ∩P28(5) that has 𝑎 as
a term has error terms that consist of hit monomials. When
𝑛 = 5, then 2𝑑 + 𝑛 − 1 = 28 implies 𝑑 = 12 and the minimal
spike when 𝑑 = 12 is V = 𝑥

7
1𝑥

3
2𝑥3𝑥4. Since 𝑤0(V) = 4 we have

A
+P (5) ∩P28

(5)

= [Sq1 (P (5)) ∩P28
(𝑛)]

⊕ [

5
⨁
𝑡=1

𝑓
𝑡
(A
+P (5) ∩P12

(5))] .

(27)

Since 𝑓
𝑡
preserves the order of monomials for each 𝑡 we may,

by induction, assume that whenever 𝑎 ∈ X12
(5) is admissible

then we can find an admissible monomial 𝑢 ∈ X(4) and
a permutation 𝜎 ∈ 𝑆(5) such that ℎ

𝜆

𝜎
(𝑢) = 𝑎 (𝜆 = 1, 2,

or 3). Thus, we need only to consider the case when 𝑎 is
a term in Sq1(P(5)). Since 𝑤0(𝑎) = 𝑤1(𝑎) = 4, we see
that the error part of a hit polynomial that has 𝑎 as a term
consists of monomials which are hit unless if in the matrix
form of 𝑎 we have 𝛼

𝑜
(𝑚
𝑖
) = 𝛼1(𝑚𝑖) = 0 for some 𝑖. In this

case 𝑎 is a permutation representative of one of 𝑥7
1𝑥

3
2𝑥

3
3𝑥

3
4𝑥

12
5 ,

𝑥7
1𝑥

3
2𝑥

3
3𝑥

4
4𝑥

11
5 , or 𝑥7

1𝑥
7
2𝑥

3
3𝑥

3
4𝑥

8
5. Consider the cases where 𝑎

is a permutation representative of one of 𝑥7
1𝑥

3
2𝑥

3
3𝑥

3
4𝑥

12
5 or

𝑥7
1𝑥

3
2𝑥

3
3𝑥

4
4𝑥

11
5 . If we take 𝑚

𝑗
= 7, then the error terms in

a hit polynomial, Sq1(𝑤), that has 𝑎 = ℎ3
𝑗
(𝑢) as a term

are hit monomials. Finally it is easy to check that the case
where Sq1(P(5)) has an element which has a permutation
representative of 𝑥7

1𝑥
7
2𝑥

3
3𝑥

3
4𝑥

8
5 as a term is when such an

element is a sum of hit polynomials in P28(5). Such action
makes no contribution (in terms of adding or deducting) to
the basis ofQ28(5).A similar argument applies to monomials
of weight order of the spike 𝑥7

1𝑥
3
2𝑥3𝑥4 of degree 12 which is

also the base of our induction in the case 𝑑 = 28.
We now show that dim(Q𝑑(5)) = L𝐵(5, 𝑑) when 1 ≤

𝑑 ≤ 9. There is nothing to show in the cases 1 ≤ 𝑑 ≤ 4
as dim(Q𝑑(5)) = L𝐵(5, 𝑑) whenever X𝑑(5) = 0. In the
case 𝑑 = 5 the spike V = 𝑥1𝑥2𝑥3𝑥4𝑥5 is the only element
in W5(5). In the cases 𝑑 = 6, 7 each monomial in X𝑑(5) is
associated with one of the respective spikes 𝑥3

1𝑥2𝑥3𝑥4 and
𝑥3
1𝑥

3
2𝑥3, 𝑥

3
1𝑥2𝑥3𝑥4𝑥5 and it is easy to verify that those of the

form ℎ
𝜆

𝜎
(𝑢) for some 𝑢 ∈ W(4) form basis for W6

(5) and
W7(5), respectively. Similarly in the cases 𝑑 = 8, 9.

If 𝑑 = 10, then one can verify that in addition to
the elements obtained from W(4) via the mappings ℎ𝜆

𝜎

the five monomials 𝑥1𝑥2𝑥
2
3𝑥

2
4𝑥

4
5, 𝑥1𝑥2𝑥

2
3𝑥

4
4𝑥

2
5, 𝑥1𝑥

2
2𝑥3𝑥

2
4𝑥

4
5,

𝑥1𝑥
2
2𝑥3𝑥

4
4𝑥

2
5, and 𝑥1𝑥

2
2𝑥

4
3𝑥4𝑥

2
5 are also admissible so that

dim(Q𝑑(5)) = 280. If 𝑑 = 11, then it is easy to show that
in addition to the monomials generated from W(4) the two

monomials 𝑥1𝑥2𝑥
2
3𝑥

2
4𝑥

5
5, 𝑥1𝑥

2
2𝑥3𝑥

2
4𝑥

5
5 also belong to W11(5)

or are also admissible so that dim(Q11(5)) = 315.
Finally we note that if V ∈ P𝑑(𝑛) is a spike that satisfies the

hypothesis of Lemma 11 and is one for which 𝜆1 − 𝜆
𝑛−1 ≤ 1,

then V is the maximal spike and 𝑤(V) ≥ 𝑤(𝑎) for every
monomial 𝑎 ∈ P𝑑(𝑛). In these cases monomials 𝑎 ∈ X𝑑(𝑛)
for which 𝑤(𝑎) = 𝑤(V) are strongly associated with V. Even
though there might be other spikes of degree 𝑑 which do not
satisfy the hypothesis of the lemma, one may all the same
obtain partial results for dim(Q𝑑(𝑛)) by applying an inductive
procedure on 𝑛 as above to compute the dimension of the
subspace ofQ𝑑(𝑛) generated bymonomials in theweight class
of V.

In [19] one such case is considered. The spike V =

𝑥2𝜆−1
1 ⋅ ⋅ ⋅ 𝑥2𝜆−1

𝑛−1 of degree 𝑑(𝜆) = (𝑛 − 1)(2𝜆 − 1) satisfies the
hypothesis of Lemma 11 and is one for which 𝜆1 −𝜆

𝑛−1 = 0. It
is shown that if 𝜆 ≤ 𝑛−1, then the dimension of the subspace
ofQ𝑑(𝜆)(𝑛) generated by monomials in the weight class of V is
equal to 𝑛+∑

𝜆

𝑞=2 (
𝑛

𝑞 ) and that if 𝜆 ≥ 𝑛, then the dimension of
the respective subspace is 2𝑛 − 1.
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