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Abstract

The experimental techniques of attenuated total reflection and grating-coupling were originally emploved separately
as probes for surface polaritons. However, as far back as the mid-1970s, some value was found in actually combining
them into a single tool for probing elementary surface excitations. In this article, the theory of the two methods
combined into one probe for surface polaritons is presented. The main resulis of the calculations, here, are the first-
order diffuse reflectivities, which arise due to the presence of a classical grating. For the ease of presentation, only a
semi-infinite specimen is considered and the grating is thought to be deposited only on one interface. The discussion
highlights the advantapes the combined technigue has over either of the two methods when each is employed on its own.

i 2002 Elsevier Science B.V. All rights reserved.
PACS: TR.20.CH
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I. Introduction

The dispersion curve of surface polaritons
propagating along a planar interface separating
semi-infinite media runs far to the right of the light
hine [1]. This means that these modes are not
accessible in ordinary optical experiments whereby
light of any intensity is incident on a planar
specimen [2]. Attenuated total reflection (ATR)
has proved to be a versatile tool for probing
surface excitations propagating along  planar
surfaces. Extensive experimental as well as theore-
tical considerations of this method may be found
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in the early exhaustive editions, for example, by
Agranovich and Mills [3]. There have also been
some theoretical [4], and recently, experimental as
well as theoretical [5] imvestigations of surface
polaritons in composite media using the ATR
method. In these media, the frequency-dependent
dielectric function used takes into account the
inhomogeneity of the surface-active medium.

The other experimental technigue which has
been employed with success as a probe for surface
excitations is grating coupling [6,7] In the early
stages of using this method, gratings were -
seribed on specimen using diamond tools. As a
result, the actual surface profile of roughness
produced m this manner was poorly defined and
as such it fitted a somewhat statistical rather than
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the purely deterministic character of a classical
grating. There was also the view that a grating
inscribed on a surface-active medium was a
nuisance, perturbing the very mode under mves-
tigation. In the extensive investigations that
followed [8], especially fuelled by potenual appli-
cations of surface polaritons propagating along
rough interfaces [9], a classical-grating simply
played the role of a first-approximation model in
the charactenzation of a statistically rough surface
[10]. It was also a matter of interest Lo evaluate the
extent o which surface modes were perturbed by
surface roughness [11]. It was not long, however,
before other techniques for producing well char-
acterized gratings were developed, such as using
holographic means on photoresist materials [12].
Following this lead, Heitmann and Raether [13]
performed ATR measurements on thick Ag films
on which a photoresist with a sinusoidally varying
surface profile was deposited.

MNow, light scattered from a classical grating,
especially of small height, is much more coherent
compared to that from a statistically rough
surface. Further, in view of the great flexibility in
sample preparation as well as fabrication techni-
ques [14], grating coupling might as well be
reconsidered as a probe for surface excitations.
The desire 1o manipulate photons in a manner
similar to the control of electrons in solids has led
to a great deal of renewed mterest in a number of
research areas, for example, such as the localiza-
tion of light and microcavity guantum electro-
dynamics. To this end, there have been extensive
investigations in optical transmission of light
through subwavelength hole arrays in metal films
[15-17]. These arrays of periodic cyhindrical
cavities excite the plasmon mode analogous to
the coupling of surface phonon polaritons via a
classical grating.

In the investigations undertaken here, grating
coupling 15 reconsidered, but, in combination with
ATR in the Otte [18] configuration as a single tool
for probing surface polaritons. The combined
experimental  technique of ATR and grating
coupling potentially has substantal advantages
over either of the above two methods when each is
employed on its own. The major component of the
analysis presented here is the calculations of the

first-order diffuse reflectivities. For the ease
of presentation only 1sotropic semi-infinile speci-
mens are considered. Further, the grating is
thought to be inscribed on only one interface, that
is, either on the base of the prism or on the
specimen.

2. Formalism

The ATR set-up in the Outo [18] configuration
consists of a prism of (high) dielectric constant g4,
occupying the region z = (). The region, —d <z <0,
is usually the air-gap and the surface-active
medium, occupying the half-space z< —d, 1s
characterized by a frequency-dependent dielectric
function g5 = &(w), of the form [1]
Sw%

fw) =)+ — (1)
w7

—w? — 1w’
where e(o0) is the high-frequency dielectric con-
stant, § measures the strength of resonance, wr 15
the TO phonon frequency and [ 1s the damping
parameter. In simple systems such as those
described by the dielectric function above, the
pelariton fields are simply plane wawves. For
perfectly planar surfaces, there 1 only one type
of the polarton fields which are proportional to
e'i=x—20) With the grating present, the situation is
different as there emerge other types of the
polariton fields. The profile of a classical grating,
taking only the first Fourier component, is
described by

wl(x) = wgle'® + 725, 2)

where w15 the grating amphtude and @ = 2r/ag 15
the reciprocal lattice vector of a grating of period
ag. The new types of waves thal emerge are
proportional to et @1 Theee are identified
as the first-order fields characterized by propaga-
tion in the g, = k1, +Q tangential components of
the wave vector. It turns out; however, that in first-
order perturbation theory (such as here) the two
types of the first-order fields couple independently
to the zero-order fields. It therefore, suflices to
consider the first-order fields for propagation in
only one of the two (g, or g7, ) wave numbers. In
fact, reversing the sign of @ in the fields for
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propagation in one wave number gives the fields
for propagation in the other wave number. To
distinguish between the zero- and first-order fields,
the amplitudes of the zero-order polariton fields
are denoted by normal letters, while those for the
first-order fields are denoted by script letters. The
polariton fields, in p-polarization; (£,,0, E.), in the
fAh (¢ = 1,2 and 3) region are given below as
follows:

The zero-order felds, which exist even in the
absence of surface roughness, are

Ep = [Ape™ %" 4 Bt} gilix—a) 3)
and
k1£ — g2 tetpzy ik x—eni)
L P FUU PR @
ar

where the perpendicular a, and tangential k.
components of the total wave vector are, respec-
tively, given by

2 w? 2
4=t (3(_2_ ki) and  kiy = ei—sin“f (5)
P s

in which ¢ =1/, /g is the speed of light in
vacuum. The angle of incidence of the incoming
radiation, 0, must be greater than the prism-air
critical angle, §, = sin~'(y/&2//e1), if total inter-
nal reflection s Lo occur. The tangential compo-
nent of the wave vector of the incident radiation
s a conserved quantity which means that &, =
ka - k:ix-

The first-order fields for propagation in g1, =
ki — Q. say, are

oy = | o9 4 gKtWexr}tl{aru,x—ﬂ*f) (6)
and
&= q]_‘{mfld:— ez w{twﬁz}tu{ql,x— nx), {T)
ez
where
l'.th
g§z=i(ﬁxc_2_ ]x)' {3]

In Eqgs. (5) and (8) for the perpendicular compo-
nents of the wave vectors, the upper sign (+) is
taken for fields in region one and the negative sign
for fields in regions two and three. The polariton
fields in region one propagate freely in all spaual
directions. In the other regions, there is free

propagation only parallel to the interface, but
the fields are attenuated in the perpendicular
direction, that 1s, away from the interface. In
addition, since the fields must be bounded as
z— — oo, the coeflicients By and #5 must be zero.
Further, since the first-order fields originate from
the surface, the coefficient ./, must be taken as
zero. This is to say that the diffuse radiation 1s not
a component of the incident radiation.

2.1. The modified boundary conditions

The usual boundary condiions at a planar
surface now have to be modified o ke inte
account the undulation of the surface, which is in
the z-direction. The polariton fields are referred to
a coordinate system which is simply a rotation of
the ordinary Cartesian coordinates through an
angle y. This new coordinate system is chosen so
that the tangential component of the electric field
it always in the interface [19]. The tangential E;
and the normal £, components of the electric field,
respectively, are related to the x- and z-compo-
nents according Lo

(2)-(= 2)E) o
E, —siny cosy J | E;

For a grating of small amplitude, the components
of the electric field, £ and E,, may be wrilten as
follows:

g Bt WWE

A {9b
W1+ (x) )
E,= m (9¢)

V1 +u2(x)

where #'(x) = Qu(x)/0x. It may be inferred from
Eqgs. (9b) and (9¢) that because of the undulation
of the surface, the crystal imparts momentum
+h(, to the incident radiation. This in turn
generates the diffuse fields which are propertional
o elft@h—ail  The modified boundary condi-
tions are then a contnuity of £ and =&, at the
nterface [20], located at z = w(x) or at z = —d +
u(x). For a grating of small height, only the leading
terms in the expansion of the exponentials in
Eq. (2) for w(x) are retained. The application of the
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modified boundary conditions leads to tedious
formulas connecting the various amplitudes of the
polariton fields. In these, linear combinations of
the amplitudes emerge which are coeflicients of
effur—al in one case and those of el ud @-ar iy
the other. The coeflicients of e™=="% are ass0-
ciated with the specularly reflected intensity while
those of the factor e =9 are associated with the
diffuse reflectivities.

3. The systems studied

The formalism developed in the previous section
s now applied to the two systems mentioned
earlier, when the grating is on the base of the prism
or on the semi-infinite specimen. The numerical
values of the parameters used are as follows: g =
11.70, &2 = 1.00 and yd/c = 1.15. The values of
the constants for the evaluation of the frequency-
dependent dielectric function given by Eg. (1) are
[1]e(e0) = 9.09, 8§ = 2.01 and wy = 366 cm™'. The
room-lemperature value of the damping para-
meter, reduced by an order of magnitude, is
o =5 % 1004 Unless otherwise stated, the
grating is characterized by the amplitude and the
period such that wrug/c =005 and eQfwr =
0.40, respectively.

3.1 Smooth surfaces

As mentioned earlier, if the polariton fields are
expanded only up to first-order in the grating
height, ug, the equations that determine the zero-
order amplitudes of the polariton fields stand
alone. The specularly reflected intensity, guoted
here for the sake of completeness, is found from
the well-known result for the zeroth-order reflected
amplitude [2,3,21]:

B
.4_: = |y aafly — g2 o)l @aff; + £2y ﬁz]_j, (10

where
B = lesa2 sinhiaa d) + eaas coshiaad)), i
By = |gaa2 cosh{ad) + eaas sinh{ aad)), 12}

By = [eaga: sinh(ga-d) + £2g3- coshiga-d)] (13)

and
By = [eaga-coshiga=d) + eags. sinhiga-d)]. (14)

The inadequacy of this first-order pertur-
bation theory should be emphasized. As stated
earlier, in the first-order perturbation theory
the equations that determine the zerco-order
amplitudes stand  alone. In reality; however,
the energy carried by the higher-order fields
is derived from the zeroth-order fields. Clearly
there must be an intensity defiat in the specularly
reflected beam which appears as the diffuse
radiation. From a theoretical point of wview,
the amplitudes of all orders should therefore
be connected in some way. The zero-order fields
and both types of the first-order fields are all
mdeed coupled if the polariton fields are ex-
panded at least up to the second-order in the
grating amplitude. It is clear that retaining
higher-order terms in the expansion of wlx)
necessitates  incorporating  higher-order  po-
lariton fields in the theoretical treatment of
this problem. This more realistic approach,
which only, nonetheless, adds computational
complexity, 1% beyond the scope of this rather
illustrative analysis and is therefore not persued
further.

3.2, Grating on the base of the prism

The application of the moedified boundary
conditions leads to the following equations for
the determination of the amplitudes of the first-
order fields:

—aai(1 + k@ fahuold — 8] + 3
= a1l — ki Qf gl Az — Ba] + s + S,
(15)

e1gizgastig[Ay + By — 1e1g2:9,
= eaffi-qutigl Az + Ba] + eagi:[ofs — 3], (16)

afye 0 = of e o g, e (17)

and

g e = pgafathe ™ — ghed) (18)
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The diffuse reflectivity, # = |9,/ 4, |2, 18 caleunlated
from the corresponding amplitude given by

B _Ne a9
A Dp
where

Np = 2i(er — ea)sakrwqiafa fy + 81 g2aaf f3lgi:u0
(20)

and

Dp = 1oy fy + e fallier Py + e2q1:P4). (21)

Mote that for a grating of small height, the
emergence of the two first-order beams is equi-
angular about the specularly reflected beam, at an
angle ¢ such that

¢ = f+un (g /g (22)

Fig. 1 shows the dispersion curve of surface
polaritons for a semi-infinite medium, as a plot
of ey versus ek, ferr. The straight lines are the
ATR-grating scan lines, in the frequency scan. The

1. 18— - —

/i JI

- ealfir

fl | ey | 4= el fur
, | I |
A5 1.8 i

1.2 1.6 zp 2.5
ckzfwr

Fig. 1. The surface polariton dispersion curve for a semi-
infinite planar medium, The straight lings are the typical ATE-
grating coupling Prequency scan lines as follows: The solid scan
ling corresponds o the zero-order reflecuvity, that is, for
propagation in k. The dashed scan line corresponds (o the
first-order propagation in &y, — @ and the dotied line is for
propagation in kyg + €. The angle of incidence 15 0 = 267,

solid line 1s that assoaated with smooth surfaces,
ckiyfwr. The other lines are for propagation in
clkyy — )/ ewr, the dashed curve, and that for
propagation in clkix + @)/ wr, depicted as the
dotted line. Note that the dispersion curve is
drawn only within the surface polariton frequency
range, o7 o= oy, with the origin being shifted to
the TO phonon frequency. The surface polariton
cut-off frequency is given by [1]

w? = [(e(o0) + 62+ $) /(e 20) + )]} (23)

Fig. 2a shows the diffuse reflectivities in the

frequency scan for propagation in e~ for the
system when a grating of height /e = 0,05
and pericd o /ot = 040 is deposited on the base
of the prism. The different angles of incidence used
to identify the individual curves are 0 = 26°, for
the thick curve with asterisks, 0 = 28°, for the
smooth solid curve and, # = 30°, for the dashed
curve. It is seen that each curve is characterized by
two polariton structures, which in this particular
case are dips. These structures occur at frequencies
when the tangential wave vectors of the polariton
and the mcoming radiation are matched at the
same value of the frequency. Under these condi-
tions, the polariton becomes radiative and, conse-
quently, removes energy from the incident
radiation. Now, recall that in the first-order
perturbation theory as here, the amplitudes of
the zero-order fields are coupled to the amplitudes
of the first-order fields only in one of the two
propagation wave numbers, g, =k — @ or
g, =k + Q. In terms of the kinematics of
Fig. 1, therefore, these first-order reflectivities are
associated with only two scan lines, those for &y,
and g, It is noted that the polariton structure
associated with the g7, scan line is rather broad.
This 15 related to the nature of the surface
pelariton dispersion curve shown in Fig. 1. At
the low frequency end, the dispersion curve is
photon-like: hence, it runs almost parallel and
rather close to the gp, scan line. The damping
parameter [ actually broadens the cross-over
point of the dispersion curve and the scan line.
This means, at least in principle, that the polariton
can still be radiative over a relatively wide range of
frequency values.
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Fig. 2. {a) The diffuse reflactivities for propagation in by — O
for angles § = 267, 28" and 307 as indicated here. The grating,
characterized by the period, of/for =04 and the
height, arpug/c = 0005 is deposited on the base of the prism. The
other parameters alse given in the text are & = 1170,
g= L0, () =9.085=201, eqdic=115 and w¢=
6600 an ' (b) same as for (), but for propagation in
i+ Q.

Fig. 2b shows the frequency dependence of the
first-order reflectivities for propagation in g/, and
for exactly the same relevant parameters as for
Fig. 2a. In this case, therefore, the mode is probed
according to the scan lines for propagation in &,
and g),. The two ATR dips occur more or less at

the same frequency. This is hardly surprising
because at the high frequency of the surface
polariton spectrum, the dispersion curve is almost
flat; see Fig 1. Further, for room-temperature
values of I, typically 5.0 x 10 3wy, the two dips
merge into one relatively broad dip and therefore
are not resolved. One implication of this resonance
broadening is that the presence of a grating on the
base of the prism enhances the absorption of
energy by the polariton from the incident radia-
tion. As anticipated, the polariton structures shift
to higher frequencies as the angle of inadence 1s
increased. An increase of the angle of incidence
resultsin the increase of the tangential wave vector
of the incoming radiation. Consequently, the
pelariten becomes radiative at higher frequencies,
or al larger tangential wave vectors of the
polariton. In terms of the kinematics of Fig. 1,
an increase in 0 means that the ATR-grating scan
lines are displaced to the right. The scan lines
therefore intersect the polariton dispersion curve
at higher frequency values.

3.3 Grating on the specimen

Following exactly the same analysis as in the
previous sub-section, the amplitude of the first-
order reflected wave for propagation in e®¥n*=9 s
found to be:

@ Ns )
=3 24
Pt (24)
in which

Ng = Zigeales — e3)leskiegie + 2a3g3:]q-quaaty
(25)

and
D, = Dp. (26)

The first-order diffuse reflectivities for this system,
when the grating is inscribed on the surface-active
medium, are shown in Fig. 3. Note that these
reflectivities have been amplified by a factor of a
thousand as they are much weaker compared to
those for the system in which the gratng is on the
base of the prism. Fig. 3a is for propagation in g,
and Fig. 3b is for propagation in the other (g])
first-order wave number. The relevant parameters
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Fig. 3. {a) Same caption as for Fig. 2a except that here the
grating is deposited on the spacimen; (b) same as for (a), but for
propagation in kg + Q.

are as for Fig. 2, in particular, # = 26°, for the
thick curve with asterisks, 0 = 28°, for the smooth
solid curve and @ = 30° for the dashed curve. As in
the previous section, the frequency positions of the
polariton structures can be predicted following the
simple kinematics of Fig. 1. The immediate ob-
servation regarding the reflectivities depicted in
Fig. 3 is that the polariton structures are peaks.
This 15 in stark contrast to the case when the
grating 15 on the base of the prism. It is noted that
when the grating s inscribed on a semi-infinite

medium, upon becoming radiative, the surface
polariton can in fact emit energy [9). This has also
been confirmed in the recent investigations in
which plasmon polaritons were probed using an
array of holes [15]. It 1s also noted that when the
graling is on the specimen, the frequency positions
of the polariton structures show a pronounced
departure from predictions based on the kine-
matics of Fig. 1. This s viewed as an indication
that the presence of roughness on a surface-active
medium, even i periodically determimstic, does
indeed perturb the moede under investigation.

The combined techmgue of ATR-grating cou-
pling potentially has substantial advantages over
the constituent methods when each is employed on
its own. To start with, in ATR alone the smallest
angle of medence 15 the prism-air critical angle.
This means that in ATR alone the section of
the surface polariton dispersion curve Lo the left
of the scan line corresponding to #,, namely,
ckyyfior = ﬁ{w,-’wﬂsin fl.. can never  be
accessed. On the other hand, in grating coupling
alone, the ok, — @)/wr scan lines do not inter-
sect the non-radiative branch of the surface
polariton curve. In as far as exhibiting the degree
of dispersion, this 1s the most interesting section of
the surface polariton curve; however, it 15 inacces-
sible in either of the constituent methods when
each is employed alone. Further, being associated
with the highest number of scan lines, ATR-
grating coupling 15 bound to be the most efficient
of the three methods for measuring dispersion
curves. AL least from the theoretical point of view,
it appears that in ATR-grating coupling the
higher-order reflectivities can easily be of the same
order of magnitude as the specular intensity. It
should also be pointed out that, at least in
principle, it 1% not necessary to produce several
gratings of different periods as was done by
Wendler et al. [14]. The one grating of small
period can be rotated through an angle y about the
normal to the interfaces. In that case, the surface
then presents an effective reaprocal lattice vector,
Oy = @ /cosp, with the result that the whole of
the surface polariton dispersion curve can be
spanned. In this way, at least in principle, covering
the whole dispersion curve can be achieved even
for only one angle of incidence.
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From an experimental point of wview, the
preferred configuration should be the one when
the grating is on the base of the prism rather than
on the specimen. Apart from permanently disfig-
uring the sample by mscribing a grating on it, the
very mode under investigation will be perturbed by
surface roughness. There 1s also the possibility of
altering the optical properties of the surface-active
medium. This will introduce yet another difficulty
m the mterpretation of the results or, more
o the point, reconciling experiment with theory.
The complication of having to select parameters
for the characterization of the grating that give
optimum coupling can also be aveided by having a
grating on the base of the prism. As is evident in
the nvestigations by Wendler et al [14], the
polariton structures in the transmission specira
can be maxima or mumima, in oa rather less
predictable way, depending on the parameters
for the characterzation of surface roughness. In
fact, 1t was found that for some parameters of the
grating, the polariton structures were barely
discernible.

4. Concluding remarks

The expenimental technique of grating coupling
as a probe for surface excitations was revised but
in combination with the method of attenuated
total reflection. The ATR set-up in the Otto [18]
was considered and, in addition, a classical grating
was assumed to be deposited on only one of the
mterfaces. The main results of these investigations
were the first-order diffuse reflectivities. These
were obtlained  within  first-order perturbation
theory, taking the grating as a perturbation from
the otherwise assumed planar character of the
mterfaces. The two systems considered were when
the grating 1s either on the base of the prism or
when it 1% on a semi-infinite specimen. It was found
that when the grating 15 on the base of the prism
the diffuse reflectivities are characterized by mini-
ma. The minima occur at frequencies when the
tangential compenents of polariton and incident
radiation, at a particular frequency, are matched.
This signifies the absorption of a part of the
mecident energy by the polariton from the incom-

ing rachation. In the case where the grating 1s on
the speamen, however, the polariton structures are
peaks. For this system, therefore, on becoming
radiative, the polariton emits energy. This 1s the
energy associated with the momentum hQ 1m-
parted to the polariton by the crystal due to
surface roughness. It 5 noted that even for a
grating of small height, the E, component of
electric field oscillates about the normal to the
undulation. The polanton consequently radiates
energy more or less like an oscillating electric
dipole. The combined method of ATR-grating
coupling arguably has some advantages over each
of the constituent probes for polaritons. In the
combined technique, it becomes possible Lo access
the section of the polariton dispersion curve Lo
the left of the ATR scan-lines associated with
mcident angles that are less than the critical angle.
The combined technique 15 the most efficent in so
far as spanning the whole of the dispersion curve.
This 15 because ATR-grating coupling is asso-
ciated with the highest number of scan lines
which essentially cover the whole surface polariton
dispersion curve. In any case, probing any section
of the dispersion curve can also be achieved
by appropriately rotatung the grating thereby
varying the effective period of the grating. From
an expenmental pomt of view, the preferred
configuration would be when the grating is
mscribed on the base of the prism rather than on
the surface-active medium. Imprinting a grating
on the specimen can resull in permanent disfigure-
ment and possibly the alteration of the optical
properties of the sample. Perhaps it 15 more
mmportant that the very mode under investigation
will be perturbed by surface roughness on the
specimen. This is possible even for small values of
wy since surface modes can be very strongly
localized at the interface.

Finally, for a future outlook, the analysis
carried out here may be extended to the more
realistic systems, such as those studied by Heit-
mann and Raether [13], of thin film samples. The
polariton fields, on application of the boundary
conditions, could be expanded to at least the
second-order in the grating amplitude. In this way,
the influence of the grating on the specularly
reflected mtensity could be evaluated.
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