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Abstract Electron states in a sinusoidally deformed

cylindrical nanowire are probed within the effective mass

approximation. The nanowire is immersed in a homoge-

neous magnetic field applied parallel to the axis of the wire.

The sinusoidal deformity affects quantum properties of

electrons considerably. The deformity introduces energy

dependence on the axial position, enhancing (decreasing)

confinement energies in regions where the radius is nar-

rower (wider). Analysis shows that the magnetic field

attenuates these sinusoidal deformity-induced distortions

on electron quantum properties
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Introduction

Recent advances in nanotechnology have made it possible

to fabricate nanowires of different sizes and geometries

[1–4]. Nanowires have a variety of novel properties, ren-

dering them invaluable in diverse disciplines like medicine

[5], optoelectronics [6] and energy physics [7], among

others. However, due to the small dimensions concerned, it

is very difficult to fabricate nanostructures with control-

lable and uniform cross-sectional area, to which some

effort has been directed [8]. Apart from the difficulty in

fabricating nanowires of uniform cross-sectional area, it

may be beneficial to produce nanowires with non-uniform

cross-sectional area [9–12].

Most of the operational principles of nanodevices rest

on the nature of quantum states in nanostructures. A better

understanding of quantum states in various systems,

therefore, is imperative [13, 14]. Thus, the main endeavour

of this communication is to interrogate the effect of

deformities of cylindrical nanowires on quantum states of

electrons in such nanostructures. This communication is

arranged as follows. Section 2 deals with the theoretical

underpinnings for the system. The pertaining results are

found in Sect. 3, with the conclusions laid in Sect. 4.

Theoretical framework

The envisaged system is a cylindrical quantum wire of

height Lz, whose radius R(z) depends sinusoidally on the

axial position of the nanowire. The wire is immersed in an

external magnetic field B directed axially, obtainable from

the vector potential taken in the gauge A ¼ ð0; 1
2
Bq; 0Þ.

Due to the cylindrical symmetry of the system, the time-

independent electron wave function can be expressed as

Wðq; z;/Þ ¼ ClmnvðqÞ sinðnpz=LzÞeim/, where Clmn is the

normalization constant and vðqÞ is the radial component of

the wave function satisfying the Schrödinger equation
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2
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2, xc ¼ eB=l

being the cyclotron frequency. The electron effective mass

is denoted by l while Vðq; zÞ ¼ VðqÞVðzÞ is the confining
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electric potential. Here, �h is the reduced Planck’s constant,

n the axial principal quantum number and m is the azi-

muthal quantum number that quantifies the angular

momentum of an electron.

The electric potential for this nanowire is modelled as

Vðq; zÞ ¼
0:::::::::::::::::::::::::::::q\RðzÞ [ 0\z\Lz

1::::::::::q[RðzÞ [ �1\z\0 [ z[ Lz

�

where R(z) is given by

RðzÞ ¼ R0 1þ aðz=LzÞb 1þ sin
Npz
Lz

� �� �� �
; ð2Þ

where a quantifies the degree of sinusoidal deformity and b
determines the envelope profile of the sinusoidal deformity

across the length of the wire. N is a positive real number,

which for this communication has been taken as an integer.

R0 plays the role of the minimum radius that the wire can

have anywhere along its length.

The radial part of the Schrödinger equation is solvable

in terms of the hypergeometric function;

vðqÞ ¼ e�1=2ð1Þb=2Mða; b; 1Þ ð3Þ

with

1 ¼ lxc

2�h
q2;

a ¼ 1þ m

2
�
Eml � 1

2
m�hxc

�hxc

;

b ¼ 1þ m

and

1 ¼ lxc

2�h
q2:

The energy spectrum is obtainable from the usual boundary

conditions at the walls of the nanowire as

Eml ¼
1þ m

2
� a0

� �
�hxc þ

1

2
m�hxc ð4Þ

where a0 satisfies the condition Mða0; b; 1RÞ ¼ 0; with

1R ¼ lxc

2�h RðzÞ2.

Results and discussions

The effective mass used in this work pertains to GaAs

nanowires: l ¼ 0:067me, me being the free electron mass.

The geometry of the nanowires can be viewed in Fig. 1,

where only the N ¼ 6 case has been illustrated. In this

figure, the effect of the envelope profile of the sinusoidal

deformity, b; on the geometry of the wires can also be

viewed, which has been taken to be linear (b ¼ 1). Even

though it is possible for b to assume negative values, for

this communication, we shall restrict b only to positive

values.

For integer N, the radius of the wire has fNþ1
2

; Nþ1
2
g

points of minimum and maximum values for odd N, and

fNþ2
2

; N
2
g for even N, where fNRmin

;NRmax
g represents the

number of points where the radius is minimum ðRmin ¼ R0Þ
and maximum ðRmaxÞ; respectively. Consequently, for

sinusoidally deformed cylindrical wires, the electron wave

functions are diminished (enhanced) in regions where R ¼
Rmin (R ¼ Rmax) as the axial position is swept (Fig. 2).

Figure 3 shows the effect of the b parameter on the

n ¼ 2 electron wave functions. For non-zero b; one side of
the wire is larger than the other, hence the electron wave

functions in regions where the nanowire is smaller (wider)

become diminished (enhanced). This is a consequence of

the fact that it requires larger energies to occupy a narrower

region than a larger one.

Fig. 1 Schematic representation of the sinusoidally deformed

nanowire, for N ¼ 6. The upper wire is for b ¼ 0 while the lower

is for b ¼ 1

Fig. 2 The variation of the electron wave function with the axial

position in a sinusoidally deformed quantum wire (for N ¼ 6, n ¼ 2)

for the different a values
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As functions of the axial position, the energy eigenval-

ues are characterised by oscillations of enhancement and

decrement, corresponding to increased radial confinement

and relaxation, respectively (Fig. 4). For b ¼ 0, the ener-

gies at z ¼ 0 equal those at z ¼ Lz for nanowires with even

N sinusoidal deformation. For odd N, the energies at z ¼ Lz
are always less than those at z ¼ 0, since the radius at

z ¼ Lz is greater than at z ¼ 0. For b 6¼ 0; the energies at

z ¼ Lz are always lower than those at z ¼ 0, since in this

case the latter portion (z ¼ 0) is smaller than the former

(z ¼ Lz), both for even and odd N.

Since the azimuthal quantum number m quantifies

angular momenta of different states, the radial expectation

values of electrons with higher m values are greater than

those with lower m values. This makes the higher m valued

states to be more susceptible to the variation in the size of

the radius. Consequently, the energy dependence on the

axial position for excited states has the same variation as

those for the ground state, albeit more pronounced.

Figure 5 illustrates the change in variation of the radial

confinement energy across the length of the nanowire

(depicted in Fig. 1) as the magnetic field strength is

increased. In the absence of the magnetic field, the sinu-

soidal deformity affects the radial confinement energies

drastically. The magnetic field has the proclivity to lessen

the effects of the sinusoidal deformity. This springs from

the fact that the magnetic field increases confinement

around the axis as it intensifies, reducing the effect of the

walls of the nanostructure as the dominant confining factor.

Figure 6 depicts the dependence of the axial position

expectation value hzi on the degree of sinusoidal deformity

a. For a perfectly cylindrical nanowire, the axial position

expectation value is at hzi ¼ 0:5LZ. When N ¼ 1þ 4p, p ¼
0; 1; 2; 3::: (for example, N ¼ 1), as a increases, one end of

the nanowire becomes wider. The wider end is preferred by

the electron because of low energies associated with it.

This leads to enhancement of hzi as a increases. When N is

even, however, increase in a does not affect hzi as regions
on both sides of z ¼ 0:5LZ (i.e., z[ 0:5LZ and z\0:5LZ)

get identically sinusoidally deformed, resulting in no side

Fig. 3 The effect of b on the wave function as a function of the axial

position (also for N ¼ 6, n ¼ 2)

Fig. 4 The effect of b on the radial confinement energies as functions

of the axial position for N ¼ 1 and N ¼ 3

Fig. 5 The dependence of the energy eigenvalues on the magnetic

field strength across the length of the wire for the indicated values of a
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(z[ 0:5LZ or z\0:5LZ) being preferred over the other. For

nanowires with N ¼ 3þ 4p, p ¼ 0; 1; 2; 3::: (for example

N ¼ 3), the lower portion of the wire is relatively wider

than the upper. This shifts electron wave functions towards

the lower portion, reducing hzi.
The effect of the axial profile of the sinusoidal defor-

mity (b) on the most probable axial position is depicted in

Fig. 7. As b increases, the lower portion of the nanos-

tructure becomes narrower than the upper. This displaces

the electron from the narrower lower portion, enhancing

the axial expectation value. As b increases further, only a

small portion of the nanowire is wider, at the topmost

part. This reduces preference in that region, signified by

the reduction of the axial expectation value as b further

increases.

Conclusions

Electron states in a sinusoidally deformed nanowire have

been obtained through the effective mass approach. The

effects of the sinusoidal deformity and the envelope profile

of the deformity on quantum properties (wave functions,

energy eigen values, position expectation values) have

been investigated. The sinusoidal deformity merely com-

presses and decompresses the wave function across the

length of the nanowire. This corresponds to modulation in

electron energy eigen values. Additionally, the deformity

increases the axial expectation value of electrons in

nanowires with N ¼ 1þ 4p and decreases that of electrons

in nanowires with N ¼ 3þ 4p, where p ¼ 0; 1; 2; 3; :::,

while those of electrons in nanowires with even N remain

unchanged only for b ¼ 0.
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