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HOMOTOPY LIE ALGEBRA OF CLASSIFYING SPACES FOR
HYPERBOLIC COFORMAL 2-CONES

J.-B. GATEINZI

{communicated by Johannes Huebschmann)

Abstract
In this paper, we show that the rational homotopy Lie alge-
bra of classifying spaces for certain types of hyperbolie coformal
2-cones is not nilpotent.

1. Introduction

A simply connected space X is called an n-cone if it is built up by a sequence of
cofibrations

Vi & Xy 2 Xe

with Xy = # and X, ~ X. One can further assume that ¥ ~ X" 1Wy isa (k—1)-
fold suspension of a connected space Wy, [3]. In particular & 2-cone X is the cofibre
of a map between two suspensions

valyp_ x (1)

Spaces under consideration are assumed to be 1-connected and of finite type, that
is, H'(X;Q) is a finite-dimensional Q-vector space. To every space X corresponds
a free chain Lie algebra of the form (L(V'),4) [2], called a Quillen model of X. It
is an algebraic model of the rational homotopy type of X. In particular, one has
an isomorphism of Lie algebras H,(L{V ), ) = 7, (0X) @ Q. The model is called
minimal if 4V — L2%(V'). A space X is called coformal if there is a map of differential
Lie algebras (L{V'),d) — (7, (X )& Q, 0) that induces an isomorphism in homology.
Any continuous map f : X — Y has a Lie representative f : (L(W),8') — (L(V), §)
between respective models of X and V.

If X is a 2-cone as defined by (1) and f : L(W) — L{V) is a model of f, then
g Quillen model of the cofibre X of f is obtained as the push out of the following
diagram:

(L(W),0) —— (L(V),0)
| j

(LW @ sW),d) —L= (L(V & sW), §)
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where (L{W & &W),d) is acyclic. Moreover the differential on L{V & sW) verifies
deW = L{V). Hence a 2-cone X has a Quillen model of the form (L{Vy & Vo), 8)
such that ¥y = 0 and 6Vo < L{V7).

A Sullivan model of a space X is a cochain algebra (A2, d) that algebraically
models the rational homotopy type of X. In particular, one has an isomorphism of
craded algebras H*(» 2, d) = H*(X ;). The model is called minimal if dZ © /&2,
In this case the vector spaces Z" and Hom({m, (X ), Q) are isomorphic. If X has the
rational homotopy type of a finite CW-complex, we say that X is elliptic if 7 is
finite dimensional, otherwise X is called hyperbolic.

2. Models of classifving spaces

Henceforth X will denote a simply connected finite CW-complex and £, its
homotopy Lie algebra. Let aut X denote the space of free self homotopy equivalences
of X, aut; (X} the path component of aut X containing the identity map of X. The
space Bauty (X ) classifies fibrations with fibre X over simply connected base spaces
[4]).

The Schlessinger-Stasheff model for Baut(X) is defined as follows [12].
If (L{V"), §) is a Quillen model of X, we define a differential Lie algebra DerL{V) =
iz Derg L{V) where Derg L(V') is the vector space of derivations of L{V') which
increase the degree by k, with the restriction that Der; L{V) is the vector space of
derivations of degree 1 that commute with the differential §.

Define the differential Lie algebra (sL{V) ¢ DerL({V), D) as follows:

s The graded vector space sL{V') & DerL{V") is isomorphic to sL{V ) &Der L{V'),

o If 8,y € DerL(V) and sx, sy € £L(V'), then [8,4] = 6 — (—1) 178, |6, sx] =

(—1)¥8(x) and [sz, sy] =0,
e The differential I is defined by D8 = [4,6], DNsx) = —sdz + adx, where adz
is the inner derivation determined by .

From the Sullivan minimal model (2, d), Sullivan defines the graded differential
Lie algebra (DernZ, D) as follows [13]. For k& > 1, the vector space (Der A Z);
consists of the derivations on AZ that decrease the degree by k and (Der A2); is
the vector space of derivations of degree 1 verifying 46 +6d = 0. For 8, £ Der AV,
the Lie bracket is defined by [f,7] = #v — (—1)/®/"/v8 and the differential D is
defined by D8 = [d, 6].

We have the following result:

Theorem 1. [13, 12, 14] The differential Lie algebras (DerAZ, D) and
(eL{V) & DerL(V),D) are models of the classifying space B aut(X).

An indirect proof of the Schlessinger-Stasheff model is given in [8, Theorem 2].

3. The classifving space spectral sequence

Recall that if (L,4) is a graded differential Lie algebra, then I hecomes an UL
module by the adjoint representation ad : L — Hom(L,L). In the sequel all Lie
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algebras are endowed with the above module structure.
Let (L{V"), §) be a Quillen model of a finite CW-complex and (TV, d) its envelop-
ing algebra. On the TV-module TV @ (Q & V), define a Q-linear map
S:TV@(QasV) = TV ® (Qa&sV)
as follows:
o S(lex)=01forall x = Q& sV,
s Slv@l)=1lmsvforallv eV,
o IfacTV and z =TV @ (@ &V) with |z = 0, then S{a.x) = (—1)%a.5(z).
The differential on the TV-module TV & (Q & &V is defined by
Dilmsy)=v@l-Sdv@l)foveVand D(1e1)=0
It follows from [1] that (TV & (Q&sV), D) is acyelie, hence it is a semifree resolution
of @ as a (T'V, d)-module [6, §6].
Using the Schlessinger-Stasheff model of the classifying space, the author proved
the following:
Theorem 2. [8] The differential graded vector spaces Hompy (TV 2(QaeV), LV))
and eL{V) & DerL{V') are isomorphic. Moreover, for n = 0, the Q-vector spaces
Extp (Q LIV and mpy (2B auty X)) ©Q are isomorphie,
In particular if X is a coformal space, one has an isomorphism m, (B auty X )@@ =
Ext? . (@, Lx). Therefore m, (B aut; X) ® @ can be computed by the means of a

projective resolution of ©@ as an U7 L y-module.

Consider the complex P = Homq- (TV @ (Q & sV, L{V)). Filter V' as follows
FV =0, Fp,,WV={zcV .dreL{F,V)}
We will denote V, = FpV/F, V. If F,, V' # F,V =V, following Lemaire [10] we
say that V' is of length n. We will restrict to spaces with a Quillen model of length n.

Define a filtration on P =TV @ (Q & sV as follows:
Po=TV@Q P=TV @ (Qa&sVi),... ,Pa =TV @ (Q& &Ven).
We filter the complex
Homypy (TV @ (@& &V ), LIV))
b}'-
Fr={f:f(Pe_1) =0}

This yields a spectral sequence E, such that Ef"? = Homg(sV,, Ly ) for p > 1,
E{"" = Homg(Q, £x) and that converges to Exty (@, L(V)). This sequence will be
called the elassifying space spectral sequence of X,

Now assume that X is coformal and let A = ULy, If L{V1)/T is a minimal
presentation of £y, then there is a quasi-isomorphism (L{V;&Vads- - -3 Va) d) — Lx
which extends to p: (TV,d) — (A,0). The (E,,d) term provides a resolution

= AweVy - AeelVyy — o= A@sV - A -0
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of  as an A-module. Here the differential is given by the composition
Vo LTV @ (QD Va1) 25 A0 (QE aVaon).

The spectral sequence will therefore collapse at E5 level. Moreover Ext} (), £y ) is
endowed with a Lie algebra structure verifying

[Ext?* Ext®*] C ExtPti—1* (2)

The Lie bracket can be defined using the bijection between the Koszul complex
C*Lx,Lx) and derivations on the Sullivan model C*(Lx, Q) of X [9, Propo-
sition 4] (see also [7] for a direct definition of the Lie bracket on C*( Ly, Ly )).
Alternatively one may use the bijection

Homyy (TV @ (@@ sV),L(V)) = sL(V) ¢ DerL(V)

to transfer a Lie algebra structure on Homp [TV @ (@ & V), L{(V)) from
sL(V) & DerL(V).

Definition 3. Let L be a Lie algebra. An element r < L is called locally nilpotent
if for every y £ L, there iz a positive integer k such that (ad x)*(y) = 0. A subset
K Z L is called loeally nilpotent if each element of K is locally nilpotent.

We deduce from Equation (2) the following

Proposition 4. Let X be a coformal space of homotopy Lie algebra denoted £y .
If X hes a Quillen model (L{V),d8). of length n, one has:
1. For k# 1, Ext® (Q, £x) is locally nilpotent,
2. Extl(Q, Ly) is a subalgebra of Ext,(Q, L),
3. If Exty(Q, Lx) =0, then Gisi, Extly (Q, £x) s an ideal of Ext (@, £x), for
ip = 1.

We will now assume that X is a coformal 2-cone. Recall that X has a Quillen

minimal model of the form (L{V; &V3), 4), with V3 = 0 and §Ve < L{V} ). Moreover
mA0X ) @0 =H (L(V; &V, 8) = L{Vy) /I, where T is the ideal of L[V, ) generated
by V.
Definition 5. Let L{V) be a free Lie algebra where {a, b,e,...} is a basis of V.
Denote L™(17) the subspace of L{V') consisting of Lie brackets of length n. Consider
a basis {uy, ua,.. .} of L™(V) where each u; is a Lie monomial. If r = {a,b,e,...},
we define the length of u; in the variable x, [,{u;), as the number of occurrences
of the letter = in u;. If u = % rju; € L™(V), define I;(u) = min{i;(u;)} and if
v =Y v; where v; € LY{V), [,(v) = min{l.(v;)}.

It is straightforward that the above definition extends to the enveloping algebra
Tv).
Theorem 6. Let X be a coformal 2-cone and (L{Vy &:Va), §) be its Quillen minimal
model. Choose o basis {xy, 20, ...} for Vi and a basis {yy,y0,...} for Va. If for

some zy € {2y, 7o, ...}y Lo (005) 2 2 for all y; € {,ys,... |, then Ext}* (@, Ly)
iz infinite dimensional
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Proof. Note that for ¢ # k the element {ad r;)"(zy) is a nonzero homology class in
H,(L{V; & V32),d) as it contains only one occurrence of xp. Take y; € {y1,v2,...}
and ¥y, € {r1,Te,...} with m # k. For each n = 1, define f, € Homa(4A @
8Vy, Lx) by fnley:) = (adzy,)"(z,) and fr(sy;) = 0 for j # t. Obviously f, €
Homg4{A @ sV5, £x) is a cocycle. Suppose that f,, is a coboundary. There exists
gn € Homua(A @ sV1, £x) such that fn(sy:) = gn(dsy;). From the definition of
the differential d, one has dsy, = %", p;sr;, where the p;'s are polynomials in the
variables 4, #a,.... From the hypothesis on the differential dy; one knows that
Iz (pi) = 2 for i # k and I;, (px) = 1. By using the number of occurrences of the
variable 2, one deduces from the previous equalities that (ad x,,, )" (x5) equals the
component of length 1in . of ps.gy, (2. ). Therefore, in the monomial decomposition
of gn(szs) (resp. py) there must exist (ad Tm,)""%(zx) (resp. zi ). We obtain a
contradiction with I, (pg) = 1.

The cocycles f,, create an infinite number of non zero classes (of distinet degrees)
and the space Eb(ti’*{@, Lx ) is infinite dimensional. O

Corollary 7. If hypotheses of the above theorem are satisfied, then cat{ Baut; (X)) =
oo,

Proof. If sxr € Ext™* C L(V1)/I and f € Ext®* then [f, s7] = +sf(z). As elements
of Ext®* vanish on V;, we deduce that [Ext®* Ext*] = 0. It follows from Theo-
rem i that J = E:{t%mx{t@, L x) is an infinite dimensional ideal of 7,(QB aut,({ X)).
Moreover it follows from Equation (2) that J is abelian. We deduce that the category
of B auty(X) is infinite [5, Theorem 12.2]. O
If X is an elliptic space of Sullivan minimal model (AZ, d) then Der A Z is a
finite dimensional (J~vector space. Hence the homotopy Lie algebra of Baut;(X) is
finite dimensional, therefore m, (2B aut; (X)) & Q is nilpotent. In [11], P. Salvatore
proved that if X = §2*+1y g2+l then w, (2B aut, (X)) © Q contains an element
o that is not locally nilpotent. The proof consists in the construction of two outer
derivations o and 3 of the free Lie algebra Lia, b), where [a| = |b| = 2n, such that
(ada)'(8) # 0, for every integer i > 0. The technique can be applied to any free
Lie algebra with at least two generators. Therefore 7,.(QB aut (X)) & @ contains
an element o that is not loecally nilpotent it X is a wedge of two spheres or more.

P. Salvatore asked if m,(QF auty (X)) @ @ has always such a property for ev-
ery hyperbolic space X . A positive answer to this question would provide another
characterization of the elliptic-hyperbolic dichotomy [5].

For a product space we have the following

Proposition & [f X = Y = Z is a product space such that the Lie algebra
T (B aut,(Y)) @ Q is not nilpotent, then w, (2B aut, (X)) @ Q iz not nilpotent.

Proof. Let (AV,d) and (AW, d") be Sullivan models of ¥ and Z respectively. There-
fore (AV @ AW,d ©d') is a Sullivan model of X. It follows from [12] that

H,(Der(AV @ AW))=H,(Der AV) @ H*(AW) @ H*(AV) @ Hy(Der A W).
Therefore 7, (2B aut, (Y)) @ Q is a subalgebra of 7,(QB aut, (X)) & Q. O
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