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Abstract

The Republic of Botswana 1s one of the sunniest countries i Southern Africa. It has very
little clound cover, insufficient rainfall, very low humidity, and very low wind speed throughout
the year for most parts of the country. The daily extremmum temperatures appear to be very
much related to solar mradiation which mn tum depends on sunshine duration. In Botswana,
solar irradiation on a horizontal surface 15 measured only at Sebele, but sunshine duration and
extremum temperatures are measured at several locations throughout the country. This paper
presents bivanate models that relate solar iradiation to sunshine duration, and solar irradiation
to extremum temperatures for Sebele, Botswana. Autocomrelation analysis revealed that the
solar irradiation series 1s stationary for 4=2 and D=0, sunshine duration series is statiomary
for =0 and D=0, while the exiremum temperatures series are stationary for either ¢=0 and
D=N where N=1. 2, . . . or d=1 and D=1. If 1s found that there 15 a lag of three months
between the peaks of the differenced series of fractional sunshine duration and fractional solar
irradiation. On the other hand it 1s found that there is at most a lag of one month between
the peaks of the differenced senes of maximum temperature and solar irradiation, and that
there 1s no lag between the peaks of the differenced series of minimum temperature and solar
irrachation. Analysis of the noise component revealed that the bivariate processes under con-
sideration behaved etther as a purely seasonal MA processes of order (0.1,1) or as ARIMA
processes of order (0, 1, 1)x(0, 1. 1)y, or as a purely nonseasonal, autoregressive process of
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order 2. We clamm that the relationships found for Sebele can be applied to estumate solar
irradiation at other locations with climatic conditions similar to Botswana.
@ 2002 Elsevier Science Ltd All rights reserved.

1. Introduction

Solar radiation measurement and modeling are amongst the important aspects of
solar energy applications as far as the sizing of solar devices 1s concerned. In
developing countries it 1s usually the extremum temperatures that are measured for
most locations, albeit sunshine duration is measured at few locations and solar
irradiation is measured at even fewer locations. In that case. one resorts to modeling
to estimate solar irradiation at locations for which measured solar irradiation data is
not available. ingstrém type relationships are the most extensively used to estunate
solar irradiation from sunshine duration [1]. Whereas solar irradiation does depend
directly on sunshine duration. it 1s also known to be related to other meteorological
parameters such as the extremum temperatures. cloud cover. ramfall. etc. In Bots-
wana, where the climate is mostly clear. with very little clond cover. very low
humidity and insufficient rainfall, the extremum temperatures appear to be very much
determined from solar irradiation Consequently, understanding the relationship
between extremum temperatures and solar wradiation mav provide an alternative
approach to estimating solar irradiation for locations with climatic conditions similar
to Botswana, where the measured temperatures data are available for a large number
of locations and for longer durations than the measured data for sunshine duration.
In this paper. relationships between fractional sunshine duration (sunshine duration
as a fraction of the day length) and fractional solar irradiation (terrestrial solar
irradiation as a fraction of the extraterrestrial solar wradiation) on a horizontal sur-
face. and that between mean monthly extremum temperatures and mean monthly
solar uradiation on a honzontal surface for Sebele, Botswana, are studied using
bivarnate autoregressive mntegrated moving average (ARIMA) modeling techniques.

2. Sunshine and temperatures data for Sehele, Botswana

Sebele (latimde: 24° 34" S: longitude: 25° 37" E; altitude 994 m), 10 km north-sast
of the capital city Gaborone 1s the earliest site i1 Botswana where measurements of
solar radiation data was started 1n September/October 1975 by the Department of Agni-
cultural Fesearch, Ministry of Agriculture, Botswana, and to date remains the only
site 1 Botswana for which both daily sunshine duration and solar irradiation on a
horizontal surface are available. Sunshine duration. on the other hand, is measured
at geographically well-distributed 14 synoptic stations throughout the country by the
Department of Meteorological Services. Sunshine duration is measured using the
Campbell-Stokes recorder, and the daily global irradiation 1s measured using the Kipp
and Zonnen pyranometer. The pyranometer was calibrated annually against a standard
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precision pyranometer following the IGY procedure [2] under clear skies conditions.
The daily sunshine duration data available 1s up to date. with only about 2% of data
points missing. Solar irradiation data on the other hand. due to failure of the measuring
wnstruments. has about 5% data points muissing for the peniod 1973 to 1992, has been
measurad for just a few months during 1993 to 1994, and has not been measured
beyond 1994, With an average of 314 sunny davs, and 3320 hours of sunshine per
vear [3]. Sebele is a good representative of the solar conditions in parts of Southem
Africa such as Botswana. Namubia and the north-west portion of South Africa.
Climatically, Botswana 1s arid to semi-and. and experiences extremes of tempera-
tures. During the peak summer months (December/January). the day-temperatures in
some locations mav occasionally reach as high as 45°C. whereas the peak winter-
nights (June/July) experience occasional below-freezing temperatures resulting in
night frost. The extremum temperatures data for most locations of interest in Bots-
wana are available for longer periods than the solar radiation data, some records
including Sebele extend as far back as the mid 60s, and have less than 1% missing
data points. For this study we have used data for a period of seventeen years from
1976 to 1992 for which the mean monthly values for all four sets of data, namely
sunshine duration, solar irradiation, maximum temperatures and minimum tempera-
tures are available with less than 2% data missing. Figure 1 shows the mean monthly
extremum temperatures for Sebele. The shape of these graphs are very similar to
the shape of the monthly average solar irradiation graphs in Jain and Lungu [4]. This
suggests a strong relationship between solar irradiation and extremum temperatures.
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Fig. 1. Mean monthly extremum temperatures (1976-1992) for Sebele, Botswana.
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3. Characteristics of extremum temperatures for Sehele

The characteristics of the mean monthly solar irradiation and sunshine duration
for Sebele are discussed in Jain and Lungu [4]. Subjecting the monthly averages
extremum temperatures series M, and the total extremum temperatures series I, to
harmonic analysis as in Jain and Lungu [4] reveals that: (i) for the monthly averages
series the first two harmonics are the most significant as thev explain about 91% of
the variance of the M, series of extremum temperatures. (11) For the total series of
maximum temperatures the 23th and the 50th harmonics explain about 80% of the
variance. On the other hand, the minimum temperatures are more deterministic as
two harmonics (25th and the 50th) explain 95% of the vanance of the total series.
(111) It 15 evident from these results that the maximum temperatures are in general
more stochastic i nature as 20% of the vanance 1s explained by this component.

3.1. Stochastic components of extremum remperatures

Following Jain and Lungu [4]. several antocorrelations for extremum temperatures
were calculated for a number of possible differencing schemes #=0. 1, 2. and D=0,
1. 2. Two possible schemes for further investigation suggested by these autocorre-
lations are =0 and D=N where N=1, 2. . . .. and d=1 and D=1.

The model 4=0 and D=N iz purely seasonal. A detailed discussion for a specific
example for d=0, D=1 follows: The autocorrelation functions and corresponding par-
tial autocorrelation functions for this case are given in Fig. 2. The autocorrelation
functions display seasonality as evidenced by the large |ry values at r, 71, 712, 713
Furthermore, compared to the 95% confidence limirs, most of the autocorrelations
at other lags are mnsignificant. These autocorrelation functions mimic the behaviour
of a moving average process. This is confirmed by the partial autocorrelations which
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Fig. 2. Auto and partial correlations for the (0. 1) model of the mean monthly extremum temperatures.
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Table 1
Model parameters and statistics for mean monthly fractional sunshine doration, and extremum tempera-
tures input series for the Bivariate model

Input X, Autoregressive parameters  Model Portmanteau Critical value of
statistics pottmantean
statistics

8 8 & Iat

FSD (2, 0) 035 020 - - AR(2) 716 35
T 0.1) - = 075 1012 (0,1,1)y 20.9 35
T (1L1) 065 — 085 834  (0.L1011), 141 35
T 0.1) - — 070 510 {011y 243 33
T (1.1) 075 — 080 409  (01,1)x(011); 140 35

mimic auteregressive behaviour. The seasonality of the model 15 supported by the
fact that the significance of autocorrelations 7y, 7. 2. 713 18 removed by determining
the parameter @, only, and the behaviour of the time series is represented by a model
of the form:

Vi.Z, = (1-8,B)a, (1)

The values of the parameter ©, that minimize Za; for the extremum temperature
series are given in Table 1. and the residual autocorrelations are shown in Fig. 3. It

15 evident that compared to 93% confidence linuts the residuals are representative
of a random series.

For 4=1, D=1 the autocorrelations together with corresponding partial autocorre-
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Fig. 3. Autocorrelations of the white noise (residues) for the extremum temperatures models.
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lations are shown in Fig. 4. The autocorrelations are all msignificant except 7, 711,
712. 713, and in this case two paprametres 8; and ®, are required to remove their
significance. This 15 an indication of the presence of seasonal as well as non-seasonal
effects. The autocorrelations together with the partial autocorrelations indicate that
a model of the form (0. 1, 13x(0, 1, 1), could be fitted to the extremum temperatures
data. The proposed model 1s:

VV.Z, = (1-6,B)(1—8,BY)a, @

The admissible values of the parameters &, and ®, must satisfy —1<I6;<1, and
—1<2@®,=1. The initial values of #; and @, were estimated using:
[ P {@y

= _ITH:{J and r, = _lTE}}J (3)
where r; and r, are the autocorrelations at lags 1 and 12_ respectively. The appropri-
ate values of ¢ and @, are those that minimize Za?. The minimization procedure
15 carried out by plotting the sum of squares-surface for a range of values of #; and
@, . The surface is well behaved, having just one minimum for each case. Table 1
gives the values of the optimum parameters.

The residual autocorrelations for the seasonal. non-seasonal multiplicative Inte-
grated Moving Average (IMA) model (0, 1. 13x(0_ 1. 1),, are also shown 1 Fig 3.
These autocorrelations are typical of a random series. Note also that the seasonal
effects in the residual autocorrelations have been nearly eliminated as the autocorre-
lations 7). Fys. P13, Faz. oy Fas are all close to zero. The a; sequences pass the port-
manteau statistics test with the portmanteau statistics computed using the first 25
values of the residual autocorrelations. Compared with the value of ¥ at the 5%
level with 23 degrees of freedom all the autocorrelations are msigmificant. suggesting
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Fig. 4. Auto and partial correlations for the (1. 1) model of the mean monthly extremum temperatures.
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further that the residual series may be considered as random (Table 1). The two
models, namely the purely seasonal model (0, 1. 1), and the IMA model
(0. 1. 13=(0, 1, 1),. can be considersd as suitable representatives of the given
extremum femperatures sefies.

4. Bivariate modeling
4.1. Correlation analysis and objectives of the study

To establish the objectives of the study, we begin by investigating the relationships
between mean monthly solar irradiation. sunshine duration. maximum temperatures
(Tyax) and minmmum temperatures (Tp). and between fractional solar wrradiation
(H/Hg) and fractional sunshine duration (n/N) for Sebele where H 15 the monthly
average solar irradiation measured on a horizontal surface, H; 1s the monthly average
extraterrestrial solar irradiation [3] represented by the Julian day value for the month,
# 15 the monthly average sunshine duration. N and 1s day-length [3] for the Julian-
day of the month. The correlation matrix for these variables is given in Table 2.

From Table 2. 1t 1s evident that solar irradiation i1s highly correlated to both the
maximum and the minimum temperatures. Furthermore, fractional seolar irradiation
15 found to be strongly correlated to fractional sunshine duration. Therefore. in this
study our objective shall be to determine the bivariate models that represent relation-
ships between solar irradiation and maximum temperatures, solar uradiation and
minimum temperatures, and fractional solar irradiation and fractional sunshine dur-
ation. Extremum temperatures (Jyg,, and Thg) are also found to be highly correlated
to each other, but their relationship is not investigated further.

4.2, Theory of linear transfer functions

Suppose there are N meteorological observations on two vartables, X, (independent
variable) and T, (dependent variable) at equispaced intervals of time ¢ (monthly aver-
ages in this case). These observations may be denoted by (X, 1)) (X5 o). .. L
(X 1) and may also be regarded as a finite realization of a discrete bivariate
process with the X, series regarded as the mput, and the I series as the output. One
needs to find the impulse response function {v;}. where &==0. 1, . _ of the system:

Table 2
Correlation matrix for the mean monthly selar #tradiation, sunshine duration, maximum temperatures
{Tafax) and minimom temperamres (Tg) for Sebele

Irradiation Duration Dot T
Trradiation 1 08079 0.8413 0.7826
Duration 0.1748 01112
Tgax 1 1 09173
Tt 1

* This comrelation 1s between the fractional solar wradiation, and fractional sunshine duration.



1218 EBE Jain et al. / Renewable Energy 28 (2003) 1211-1223

Y, =v(iBhX— 4)
where v(B) = vg—v, B—v.B*— . . . is called the transfer function, B is the backward
shift operator and b 1s the delay parameter. Denoting the incremental changes in X
and ¥ by:

x, = VX, y, = VF, (5)

where d is the degree of differencing, V=(1—B). and for any series {Z,}. Z,_,=B"Z,.
then it can be shown. on differencing Eq. (4). that x,. and v, satisfy the same transfer
function model as do X, and T, 1.2,

¥ = v(Bx,_p. (6)

The linear filter Eq. (6) may also be written in an alternative form which in general
requires fewer parameters [6]. 1.e,

O(B)y; = N(B)x,—p M

where
S(B) = 1—6,B—3,B2—...—3,B" ©
(B) = y—(hB = ,B*— ... — B

On comparing Eqs (6) and (7). one obtains the identity:
v(B) = 6~ HB)(B) (N
v; =0, J=b
Vv, =0 0+ F Oy, F=01.0 10)
Vi =0wimr H 0t 00 =B+ (bt )
vi = dvmy + Savj—a + .+ S, J=(b+ 5.

It may be noted that a plot of the weights v,. &=0. 1. . . . against lag & provides

a pictorial representation of the impulse response function. In practice, however. the
system 15 infected by disturbances or noise. whose net effect 1s to corrupt the output
predicted by the transfer function model by an amount 7, so that the combined trans-
fer function—noise model may now be written as [6]:

Ve = 0T B B)x—y + 1, (1D

where x, and v, are stationary series for some value of differencing &. The Box
and Jenkins [6] pre-whitening procedure mvolves fitting an ARIMA model to the
{differenced) mput series as a first step. Suppose for a while that this 1s known as:

O(B)x, = B(B), (12)

where ¢ denotes a pure random process. It 1s evident then, from Eq. (11) that the
transformation ¢{B)0~!(B) transforms the correlated input series x, to the uncorrelated
white noise series o, , 1.e.,

o, = (B (B)x,. (13)
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Suppose, further, that one can apply the same transformation to the output series.
to give:

B = 0(BYO By (14)

and then calculate the cross-covariance function of the filtered pur and outpur,
namely , and [, It tums out that operating on both sides of Eq. (12) with
#(B) & ~1(B) vields:

B, = v(B)o, + & (13}
where £, = 0(B)¥~ (B, is the transformed noise series. Multiplying both sides of
Eq. (13) by ¢, and taking expectations. noting that ¢, and », are uncorrelated gives:

vy = @ (16)

where S, and S are the variances of ¢, and [, respectively. and Yeplk) =
E[or,_pf3,] is the cross-covariance function at lag £. The estimates v; determined as
outlined above are found to be reliable [6] and are used in this paper as a basis for
estimating the parameters b, » and 5. In addition to identifving the orders » and s
of operators 4(B) and {B) of Eq. (11). one secks to identify appropriate ARIMA
models that describe the noise at the output.

5. Parameter estimation, model identification and fitting

We seek to determune bivariate models with (1) monthly average fractional sun-
shine duration as mput and fractional solar irradiation as output. and (11) monthly
average extremum temperatures as input and solar irradiation as output.

The order of monthly differencing &. the order of seasonal differencing D. the
order of autoregressive operator 9(8) and the order of the moving average operator
@(B) are determined by autocorrelation and partial autocorrelation analysis [4.6].
The wvalues of d and D for which the input and output series are stationary are given
in Table 3. It can be shown that the (differenced) mput series x, can be transformed

Table 3
Degrees of differencing d and D for which the mput and output series are stationary

TInput X, @.D)  Output Y, (d. D)
Fractional sunshine duraticn ()] Fractional solar irradiation 2,0
Maximum temperature (1. 1) Solar irradiation 2.0
(0. 1) 2,0)
(0.2) 2,0
Minimum temperature (1. 1) Solar irradiation 2.

(0. 1) 2, 0)
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ito a purely random process ¢ for values of the autoregressive parameters &;. 6;
and ®, given in Table 1.

The autoregressive parameters obtained in Table 1 were applied to the correspond-
ing output series ¥, as shown in Table 3 to obrtain the [j, series. Then the cross-
correlation function y,g(b) between the o, and [, series and the impulse response
weights v, were calculated and compared with their approximate standard errors.
Cross-correlation functions for some o, and [, series, which are typical of those
obtained for other values of d and D for the mput/output series, are shown m Table 4.

It 15 evident from Table 4 that there 15 a delay of three months between the peak
of differenced FSD and the peak of differenced FSI. On the other hand there 15 either
no lag or a lag of one month between the peaks of the differenced maximum tempera-
ture and solar irradiation, and there is no lag between the peaks of the differenced
mimimumn temperature and solar irradiation.

Next attention 1s given to identifying, estimating and fitting a model to the n,
series as i Box and Jenkins [6]. According to this procedure, it 1s assumed that the

1, series can be represented by a seasonal autoregressive integrated moving average
process (ARIMA) of the type:

(B 0,(B)VEVn, = @ ,(B)0,(B)a, (17)

where (p, d, g) are orders of a purely nonseasonal model. (P, O, D), are the orders
of a purely seasonal model. (p, d, <P, D, )2 are orders of the nonseasonal—
seasonal model, and a, 15 a white noise series. Values for the parameters in Eq. (17)
were determined by autocorrelation and partial-autocorrelation analysis. It was found
that the 1, series was stationary either for d=0 and D=N, where N=1, 2, . . .. or for
d=1, and D=1_ or d=2 and D=0. Furthermore_ 1t was found that the », series behaved
either as a purely seasonal moving average (MA) process of order (0. 1. 1),; (Eq.
(1)) or as an autoregressive moving average (nonseasonal—seasonal) process of order
(0. 1. Lyx(0, 1. 1012 (Eqgs. (2) and (3)) or as a nonseasonal autoregressive process of
order 2 given as:

o(B\Win, = a,
where ®(B) = 1 + 05,8 + 0B~

(18)
(=) ()
iy = I—l — ] Py = I'—l — ?;IJJ

and »; are the autocorrelations at lags i=1 and 2. The autoregressive and moving
average parameters for the models identified for », are given in Table 3.

Figure 5 shows that although a few autocorrelations are outside the confidence
limits, the a, sequences, which are typical of a, sequences for other models identified,
can be considered as random sequences. The values of the ARIMA parameters indi-
cate a persistent pattern with a memory of up to two months with respect to purely
non-seasonal effects. and memory of cne month for the nonseasonal—seasonal model.



1221

FP.E Jain et al / Renewable Energy 28 (2003) 1211-1223

FID  alv0— 900— 6000— oo 00— SF00- 8500 6610— FRIO— oonsAr ™y
FIo £111— €00 6E00— OZI0 SKI0— &LT0- arln ZEH0— 10 0TS o)™y
r1o £50] 090'0 oo OLO'D TROO-— 100 SN T0E0-— TLOD torzhnsAr vy
FLIO  19€0— 0900 L0085l 1—  6LLD-— LLLD FeE 0 8L80-— ez0 oohsi(ror™yg
F10 £E0°D @O0 0l00— 6I00—  €900— Fol 81 £FlLn FEDD <00 (o ensd 0 0as:
8 L ] € t £ z l 0
NNMTF H0Ud pIEpUElg 8 @ o=y Ty) Fepaop T (7 ) ndinog(g p) indug

S[ApOU AELITAIQ U} 0 JW0S 10] T4 s1Fiam UDNE[2LI0) S5017)
b A1qEL



1222 P.E Jain et al. / Renewable Energy 28 (2003) 1211-1223

Table 5
Antoregressive and moving average parameters for the n, senies models

Process: n, series parameters APRIMA parameters Standard
Input(d, Dy output{d 1) errar: 2NN
d D 2 B! &1

FSD{0.0yFSI(2.0) 0 1 - - 0.40 014
FSD{0.0)FSI(2.0) 1 1 0.m - 0.11 014
TMax(0,1)/812.00 0 1 - - 030 014
Thax(0,1)/81(2.0) Q 2 - - 025 014
Thax{0,1)/81(2.0) 2 0 —0.70 —0.10 - 014
Thax(1,1)/5I2.0) 0 1 - - 033 014
Thax(1,1)/81(2.00 0 2 - - 013 014
TMax({1,1)/31(2.0) 2 ] —0.40 —0.05 - 014
TMin(0, 1)/SI{2,0) 0 1 - - 0.30 0.14
TMin(0. 1)/SI{2.0) 1 1 —0.45 - —0.10 014
TMin(1.1ySI{2.0) 0 1 - - 0.40 014
TMin(1.1)/SI{2.0) 1 1 —0.55 - —0.10 014

0.20
|

|~ at(1) —=-at(2) —-at(3) - anid)

0.10 -
0.05 -

0.00

-0.05

-0.10

White Noise (Bivariate Models)

0.15 4

0.20 +

£0.25

Fig. 5. Antocorrelations of the white noise (residues) for some of the bivariate models. (1) at(1): for n,
(0. 1} from FSD (0, 0)/FSI (2, 0). (i) at(2): for n, (0, 2) from Tag, (0. 10/SI (2, 00, (iif) at(3): for », (2.
0) from Ty, (1. 1W/SI (2, 0), and (iv) at{4): for n, (1, 1) from T, (1, 1)/SI (2, O).
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6. Results and discussion

A good understanding of the meteorological phenomena may be achieved through
examination of the mmpulse response weights vp . The results show that thers is a
lag of three months between the peak of the differenced fractional sunshine duration
and the peak of the differenced fractional solar irradiation. and a lag of ar most
one month between the peak of differenced maximum temperature and the peak of
differenced solar irradiation. but there 1= no delay between the peak of differenced
minimum temperature and the peak of differenced solar irradiation. The noise series
follow either a moving average seasonal process of order (0. 1, 1),. or an ARIMA
nonseasonal-seasonal process of order (0. 1, 1)=(0. 1. 1)y» or a nonseasonal autore-
gressive process of order 2. Note that the order of ARIMA models determined for
the solar irradiation series (Table 3) agrees with the orders determined from the
bivanate models (Table 3). The models identified for the n, series revealed more
information than that obtained in Jain and Lungu [4] in so far as some of the models
in this paper exhibit purely nonseasonal behaviour while others exhibit both nonsea-
sonal as well as seasonal behaviour. The relationships between extremum tempera-
tures and solar wradiation are very important for developing countries which lack
resources in terms of both egquipment and trained manpower. These relationships can
be used to generate solar irradiation data. which is required for the sizing of solar
devices, from the extremum temperatures. To the best of our knowledge, relation-
ships between extremum temperatures and solar irradiation using Box and Jenkins’
[6] techniques are a new contribution, and supplement the commonly used Angstrém
type relations between sunshine duration and solar irradiation.
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