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Abstract

Let X be a finite product of even dimensional spheres, we show that the string
homology of X contains a finite product of copies of the Witt Lie algebra.
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1 Introduction

In this paper, all homology coefficients are taken in the field of rational numbers Q. By
the work of Chas and Sullivan [2], the desuspended homology of the free loop space on an
n-dimensional manifold M, H, (MS') = H,_,(M®') admits a Gerstenhaber structure and in
particular a Lie bracket. By Cohen-Jones [3] and Félix-Thomas [6], there is an isomorphism
of Gerstenhaber algebras H, (M5') ~ HH*(C,(QM),C,(QM)). In Félix-Menichi-Thomas
[5], for any graded algebra A = (TV,d), HH*(A,A) can be computed in terms of derivations
onA.

Now recall that the rational Witt Lie algebra is the graded Lie algebra W =< ¢;,i € Z >
with the bracket [e;,e;] = (j —i)e;; ;. Denote by W, the positive part of W, that is, W, =<
e,i>1>.

Our main Theorem states.

Theorem. Let M be a product of n even dimensional spheres, then the Lie algebra HH, (M® ] )=
HH*(C.(QM),C.(QM)) contains the sub Lie algebra &_|W;, where each W; is isomorphic
to the Witt algebra W...
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2 Hochshild cohomology and derivations

Let (TV,d) denote the tensor algebra TV together with a differential d such that V is
the union V = UV (k) of an increasing family of subspaces V(0) C V(1) C --- such that
d(V(0)) =0and d(V(k)) C T(V(k—1)). This is a quasi-free algebra and for any differ-
ential graded algebra (A,d) there is a quasi-isomorphism of differential graded algebras
(T(V),d) = (A,8) with (T(V),d) a quasi-free algebra [4]. The algebra (T/(V),d) is then
called a quasi-free model of (A,9).

Denote by Der A the differential graded Lie algebra of derivations with the commutator
bracket [—, —] and the differential D = [d, —]. The differential graded Lie algebra DerA =
DerA @ sA is defined as follows [9];

D(0u+ sx) = D(at) +ad, — sd(x) where ad,(y) =xy— (—1)KPlyx,
[, B+ sx] = [0, B] + (—1)!%s0u(x),
[sx,sy] =0 with «,B € DerA and (sA); =A;_.

Let C*(A,A) denote the Hochshild cochain complex with coefficients in A and HH* (A;A)
the Hochschild cohomology of A with coefficients in A. For a supplemented differential
graded coalgebra (C,d), QC denotes the reduced cobar [4]. The cobar construction permits
one to calculate the homology of loop spaces [1], that is, H, (QC, (X)) = H,(QX).

Proposition 2.1. [5] Let (TV,d) = A and (TW,d) = QC be quasi-free models, then we
have isomorphisms of graded Lie algebras

H(Der (TW,d)) = sHH*(A;A) = H(Der (TV,d)),
where A = CV is the dual differential graded algebra.

Theorem 2.2. [5, Theorem?2] Let A = (TV,d) be a quasi-free algebra. Then there exists
quasi-isomorphisms of differential graded Lie algebras

sC*(A;A) & DerA = DerA,
where A = (T(V & Qe),d) with |¢| = 1, de = €2 and dv = dv+ev— (—1)"he, ve V.

The theory of Z,-graded Lie algebras or Lie Superalgebras has been introduced in [8].
Here we recall the following definition.

Definition 2.3. A Lie Superalgebra is a Z;-graded Lie algebra, that is, a Z;-graded vector
space L = Ly ® L1 where Ly, L1 denote the even and odd parts respectively; with a bracket
multiplication [,] compatible with the gradation, that is,

[Ly.Lg) € L,  [Li,Lj]
[Lg,Li] CL;,  [Lg

and satisfying the following properties.
[b,a] = —(—1)l9lPl[g, p] (Antisymmetry),
(—1)lelela, (b, e]] + (= 1) Pl [b, [c,al] + (—=1)"IPl[c, [a,b]] =0 (Jacobi identity).
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3 Homology of the free loop space of a product of spheres

Let X denote a 1-connected space X. Consider its Quillen model (LV,8) and (TV,d) =
U(LLV,3$), its enveloping algebra. There is a quasi-isomorphism (7V,d) — C.(QX,Q).
Denote by X5 ' the free loop space of X, that is, the space of continuous mappings from the
circle S' to X.

It comes from [3] and Theorems 1, 2 of [5] the following isomorphisms of graded Lie
algebras.

H,(XS') = HH*(C*(X),C*(X)) & HH*(C,(QX),C.(QX)) = H,(Der (TV,d)).
Our aim is to compute H, (Der (TV, d)), when (TV,d) is a model of a product of spheres.

Let X = S2" x ... x §2%_ Tt is a coformal space of which the Quillen minimal model is
a bigraded model (L(Vo @ V) @ --- @& Vik_1), ) such that

¢: (L(VodVi @ &Vi1),8) — @i L(x;)

is a quasi-isomorphism, x; is of bidegree (0,2n; — 1) and elements of V; are of bidegree
(i,*). Moreover

(1) @is of bidegree (0,0)
(2) Vi C (L(V))k-1
(3) Hy(L(V)) =0, Hy(L(V)) — &,L(x,).
We compute the loop space homology in the following case.

Example 3.1. Consider X = S x §? and (T (x,y,2),d), where |x| = |y| = 1,|z| =3, dx =
dy =0,dz = xy+ yx, its (TV,d)-model. Here V) =< x,y >, V} =< z >. Consider the even
and odd degree derivations

O (x) — x2m+1

Om (y) =0

Om (Z) = Zr—i—s:meerS s ’(Pm’ =2m

Pn (x) — x2n+2

Pn (y) =0

Pn(2) = Liti—ont1 Xzl |pa| =2n+1.

Observe that

(1) d(ZH»s:merZXS) = x2m+1y+yx2m+17
(i) d(Xsimany1 X'2x!) = 2 — 2112y,

Proposition 3.2. @, and p, are non vanishing homology classes of Der (T (x,y,z)).
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Proof. We will work with @, and a similar argument holds for p,. We show first that @, is
a cycle. Clearly (D@,,)(x) =0 = (D@,,)(y), so we need only to verify that D@,,(z) = 0.

Dou(z) = [d,9u](2)
dom(z) — Om(dz)

= d( Z xrz,xs>—(pm(xy+yx)

r+s=2m
= "y — (@(x)y + yom (%))
_ x2m+1y+yx2m+l _ (x2m+1y_|_yx2m+l)
= 0.

It remains to show that @, is not a boundary. Suppose @,, = D(¢+sa.), where ¢ € Der T'(V)
and o € T(V). As @(x) = DO(x) + [0, x] = x*™ 1 hence D(x) = x*"+! — [0, x], dd(x) =
x>t — [o,x]. This is not possible because Imd C (y). Therefore ¢y, represents a non
vanishing homology class in H,(Der (T (x,y,z)). O

Lemma3.3. (i) 0,9, = (2n+ 1)@y, onV =< x,y,z>.
(ii) Q@mpn = (2n+2)Pmin on < x,y,7 >.
(iii) PnPm = Pm+n 0N < X,¥,2 >.
(iv) PmPn = 0.

Proof. We will prove only the first relation as the remaining equalities are verified in a
similar way. As @i(y) = 0, we need only to check the equality for x and z. Clearly

Pnn(¥) = Qu(¥* ") = (2n+ 1)x2(m+n)+l = (2n+1)Qm-in(x).
We now compute ¢,,9,(z) for n < m, computations are similar for n > m.

PnPn(2) :(pm(zggoinani)
_ 21220 l-x2m+izx2n7i + 21220 (2n _ l-)xiZXZ(m+n)fi
X (2 )
:x2m+1zx2n—1 +2x2m+2zx2n—2+ . _|_2nx2(m+n)z
- 2ngxdlmtn) 4 (2n— l)xzx2(m+n)—l Foe 2l 2mtd

5 0 . . .
_i_zigoxz(zjgoszme J)x2n i

Moreover expanding the last summand yields

Zgioxi(zizoijXZm—j)XZn—i — Zme—i—Zn 4 2xzx2m+2n—1 + 3x2zx2m+2n—2
N (27’[ + 1)x2nzx2m
IR (2n+ 1)X2mZX2n
+2nx2m+lzx2n—l 4. +x2m+2nz

Therefore @,,9,(z) = (2n+ 1)Qp1n(2). O
Proposition 3.4. The Lie bracket is given by
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(i) [(Pm7 (pﬂ] = 2(” - m)(Pm+n’
(i) [Om,Pn] = 20+ 1)Pmin,
(”l) [pma pn] =0.

Proof. In each case, both expressions coincide on the generators, by Lemma 3.3. Therefore
they are equal as derivations. O

Remark 3.5. We observe the following facts.

(1) If we put e; = [@;] /2, then the Lie algebra Q < ej,ez,e3,- - > is the Witt algebra W...
In particular it is generated by e; and e;.

(2) Q< [gi] > ®Q < [p;] > is a Z,-graded algebra where |¢;| =0 and |p;| = 1.

We can generalize the following:

Theorem 3.6. IfX is a product of k spheres S, i=1,--- ,k, HH* (XS1 ) contains a product
of the Witt algebras W, @ --- ®W,.

Proof. The product X = §¥1 x §272 x ... x §?" admits a model (T (Vo @V, D---DVi_1),d),
where
V():<X1,"',Xk>, V1:<y17"'7yp>7"'

such that dVp = 0, dV; C T (V<;). Moreover
H.(TV,d) = Hy(TV,d) =T V)/(dV1).

Define

Om,i(x;) = x,~2m+1»(Pm,i(xJ') =0fori#j.

We wish to extend inductively @,,; on Vi @ --- @ V;_; into a derivation that is a cycle

but not a boundary. Assume that ¢,,; is defined on Vj,---,V;, (t > 1) such that
[d,(pmﬂ‘] =0 on V(),. . .,V, and (pm,,(v,) C (T(V))t’*.
This is easily done for t = 1. Now take v € V;11. By induction hypothesis
0 =[d, Qmi)(dv) = d(@m.i(dv)) € (T(V))1s-

AsH,(TV,d)=Hy(TV,d), thereisV' € (T (V));11,« such that dv' = @, ;(dv), define @y, ;(v) =
V. Clearly [d, @] =0 on V,y; as well.
Using a similar argument as in proof to Proposition 3.2, it is easily seen [@y i, @] =

2(n— m)@mn,i (Proposition 3.4).

Let us show that for i # j, [@pi, @nj] = 0. Observe that (@ ;, ¢, ;] =0 on Vy and
Om,i(v) C (v) forv € Vy. Take v € Vi 4. As @y ; and @, ; are cycles therefore,

([Pm,is On,j] (V1)) = [@mis P ] (dV1)

0=[d,[Omi, njll(n) =d
= d([(pm,iy (Pn,j] (Vl))’
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asdvy € T(Vp) for vi € Vi and [@p,i, @, j](dVv1) = 0. Since [@pi, @n,j|(vi) C T (V)>1 4, there
exists w € T(V)>2,, such that [@,,;,9, ;](vi) = dw. Define a derivation a by o(Vp) = 0 and
o(vy) = w. It follows that (@, ;, 9, ;| = [d,0] on Vo B V).

Extending inductively, assume that o is defined on Vo &V @ - - - @V, such that [@y, ;, @, ;] =
[d,a]. Take v, € V},

0= [d,[@misPul](v) = d([OmirPu](Ve)) = [@mis P j](dVr)
d([(pm i»Pn J](Vt)) [d OC] (dw)
=d([Qm,i, Pn,j](v)) —da(dv,)
d([(pmla(l)n J](Vz) Ot(dvt)).

AS (@i, Pp,j] (i) —0U(dv;) € T(V) >4, there exists W' € T(V)>41,« such that [@y, 1, @y ] (vi) —
odv,) =dw'.

It comes from Proposition 3.4 that [, ;, @n.i] = 2(n — m)@4n; on Vy. From the above
discussion, one can easily deduce that [@y, ;, 9, ;] and 2(n — m)@y,4p,; represent the same ho-
mology class in Der TV In the same way, we put e/, = [0,,.]/2, Wy, = Q < ¢l ¢} ei,... >
is isomorphic to the Witt algebra W_..

Consequently HH* (X s ) contains a product of the Witt algebras W, | & --- & Wy ;. O

Remark 3.7. Similarly, define p,,;(x;) = x>

and p,, i(xj) = 0 for i # j. They can be
extended into non zero homology classes of DerTV of odd degree. The even and odd

families of derivations @,,; € Ly, pn; € L1 are compatible with the gradation

[Ly.Lg) €L,  [Li,Lq]
Ly, L;) €Ly,  [Li,Lg)

= OI

Ly,
L.

NN

Hence Ly @ L7 is a Z»-graded algebra.
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