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Abstract

Let X be a finite product of even dimensional spheres, we show that the string
homology of X contains a finite product of copies of the Witt Lie algebra.
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1 Introduction

In this paper, all homology coefficients are taken in the field of rational numbers Q. By
the work of Chas and Sullivan [2], the desuspended homology of the free loop space on an
n-dimensional manifold M, H∗(MS1

) = H∗−n(MS1
) admits a Gerstenhaber structure and in

particular a Lie bracket. By Cohen-Jones [3] and Félix-Thomas [6], there is an isomorphism
of Gerstenhaber algebras H∗(MS1

) ' HH∗(C∗(ΩM),C∗(ΩM)). In Félix-Menichi-Thomas
[5], for any graded algebra A = (TV,d), HH∗(A,A) can be computed in terms of derivations
on A.

Now recall that the rational Witt Lie algebra is the graded Lie algebra W =< ei, i∈Z>
with the bracket [ei,e j] = ( j− i)ei+ j. Denote by W+ the positive part of W , that is, W+ =<
ei, i≥ 1 > .

Our main Theorem states.

Theorem. Let M be a product of n even dimensional spheres, then the Lie algebra HH∗(MS1
)=

HH∗(C∗(ΩM),C∗(ΩM)) contains the sub Lie algebra⊕n
i=1Wi, where each Wi is isomorphic

to the Witt algebra W+.
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2 Hochshild cohomology and derivations

Let (TV,d) denote the tensor algebra TV together with a differential d such that V is
the union V = ∪V (k) of an increasing family of subspaces V (0) ⊂ V (1) ⊂ ·· · such that
d(V (0)) = 0 and d(V (k)) ⊂ T (V (k− 1)). This is a quasi-free algebra and for any differ-
ential graded algebra (A,δ) there is a quasi-isomorphism of differential graded algebras
(T (V ),d) '→ (A,δ) with (T (V ),d) a quasi-free algebra [4]. The algebra (T (V ),d) is then
called a quasi-free model of (A,δ).

Denote by Der A the differential graded Lie algebra of derivations with the commutator
bracket [−,−] and the differential D = [d,−]. The differential graded Lie algebra D̃erA =
DerA⊕ sA is defined as follows [9];

D(α+ sx) = D(α)+adx− sd(x) where adx(y) = xy− (−1)|x||y|yx,
[α,β+ sx] = [α,β]+ (−1)|α|sα(x),
[sx,sy] = 0 with α,β ∈ Der A and (sA)i = Ai−1.

Let C∗(A,A) denote the Hochshild cochain complex with coefficients in A and HH∗(A;A)
the Hochschild cohomology of A with coefficients in A. For a supplemented differential
graded coalgebra (C,d), Ω̄C denotes the reduced cobar [4]. The cobar construction permits
one to calculate the homology of loop spaces [1], that is, H∗(Ω̄C∗(X))∼= H∗(ΩX).

Proposition 2.1. [5] Let (TV,d) '→ A and (TW,d) = Ω̄C be quasi-free models, then we
have isomorphisms of graded Lie algebras

H(D̃er(TW,d))∼= sHH∗(A;A)∼= H(D̃er(TV,d)),

where A = C∨ is the dual differential graded algebra.

Theorem 2.2. [5, Theorem 2] Let A = (TV,d) be a quasi-free algebra. Then there exists
quasi-isomorphisms of differential graded Lie algebras

sC∗(A;A) '← D̃erA '→ Der Ã,

where Ã = (T (V ⊕Qε), d̃) with |ε|= 1, d̃ε = ε2 and d̃v = dv+ εv− (−1)|v|vε, v ∈V .

The theory of Z2-graded Lie algebras or Lie Superalgebras has been introduced in [8].
Here we recall the following definition.

Definition 2.3. A Lie Superalgebra is a Z2-graded Lie algebra, that is, a Z2-graded vector
space L = L0̄⊕L1̄ where L0̄, L1̄ denote the even and odd parts respectively; with a bracket
multiplication [, ] compatible with the gradation, that is,

[L0̄,L0̄]⊆ L0̄, [L1̄,L1̄]⊆ L0̄,
[L0̄,L1̄]⊆ L1̄, [L1̄,L0̄]⊆ L1̄,

and satisfying the following properties.

[b,a] =−(−1)|a||b|[a,b] (Antisymmetry),

(−1)|a||c|[a, [b,c]]+ (−1)|b||a|[b, [c,a]]+ (−1)|c||b|[c, [a,b]] = 0 (Jacobi identity).
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3 Homology of the free loop space of a product of spheres

Let X denote a 1-connected space X . Consider its Quillen model (LV,δ) and (TV,d) =
U(LV,δ), its enveloping algebra. There is a quasi-isomorphism (TV,d) '−→ C∗(ΩX ,Q).
Denote by XS1

the free loop space of X , that is, the space of continuous mappings from the
circle S1 to X .

It comes from [3] and Theorems 1, 2 of [5] the following isomorphisms of graded Lie
algebras.

H∗(XS1
)∼= HH∗(C∗(X),C∗(X))∼= HH∗(C∗(ΩX),C∗(ΩX))∼= H∗(D̃er(TV,d)).

Our aim is to compute H∗(D̃er(TV,d)), when (TV,d) is a model of a product of spheres.

Let X = S2n1×·· ·×S2nk . It is a coformal space of which the Quillen minimal model is
a bigraded model (L(V0⊕V1⊕·· ·⊕Vk−1),δ) such that

ϕ : (L(V0⊕V1⊕·· ·⊕Vk−1),δ) '−→⊕k
i=1L(xi)

is a quasi-isomorphism, xi is of bidegree (0,2ni− 1) and elements of Vi are of bidegree
(i,∗). Moreover

(1) ϕ is of bidegree (0,0)

(2) δVk ⊂ (L(V ))k−1

(3) H+(L(V )) = 0, H0(L(V )) '−→⊕iL(xi).

We compute the loop space homology in the following case.

Example 3.1. Consider X = S2× S2 and (T (x,y,z),d), where |x| = |y| = 1, |z| = 3, dx =
dy = 0,dz = xy+ yx, its (TV,d)-model. Here V0 =< x,y >, V1 =< z >. Consider the even
and odd degree derivations





ϕm(x) = x2m+1

ϕm(y) = 0
ϕm(z) = ∑r+s=2m xrzxs , |ϕm|= 2m




ρn(x) = x2n+2

ρn(y) = 0
ρn(z) = ∑t+l=2n+1 xtzxl , |ρn|= 2n+1.

Observe that

(i) d(∑r+s=2m xrzxs) = x2m+1y+ yx2m+1,

(ii) d(∑t+l=2n+1 xtzxl) = yx2n+2− x2n+2y.

Proposition 3.2. ϕm and ρn are non vanishing homology classes of D̃er(T (x,y,z)).
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Proof. We will work with ϕm and a similar argument holds for ρn. We show first that ϕm is
a cycle. Clearly (Dϕm)(x) = 0 = (Dϕm)(y), so we need only to verify that Dϕm(z) = 0.

Dϕm(z) = [d,ϕm](z)
= dϕm(z)−ϕm(dz)

= d

(
∑

r+s=2m
xrzxs

)
−ϕm(xy+ yx)

= x2m+1y+ yx2m+1− (ϕm(x)y+ yϕm(x))
= x2m+1y+ yx2m+1− (x2m+1y+ yx2m+1)
= 0.

It remains to show that ϕm is not a boundary. Suppose ϕm = D(φ+sα), where φ∈Der T (V )
and α ∈ T (V ). As ϕm(x) = Dφ(x)+ [α,x] = x2m+1, hence Dφ(x) = x2m+1− [α,x], dφ(x) =
x2m+1− [α,x]. This is not possible because Imd ⊂ (y). Therefore ϕm represents a non
vanishing homology class in H∗(D̃er(T (x,y,z)).

Lemma 3.3. (i) ϕmϕn = (2n+1)ϕm+n on V =< x,y,z >.

(ii) ϕmρn = (2n+2)ρm+n on < x,y,z >.

(iii) ρnϕm = ρm+n on < x,y,z >.

(iv) ρmρn = 0.

Proof. We will prove only the first relation as the remaining equalities are verified in a
similar way. As ϕk(y) = 0, we need only to check the equality for x and z. Clearly
ϕmϕn(x) = ϕm(x2n+1) = (2n+1)x2(m+n)+1 = (2n+1)ϕm+n(x).

We now compute ϕmϕn(z) for n≤ m, computations are similar for n≥ m.

ϕmϕn(z) = ϕm(∑2n
i=0 xizx2n−i)

= ∑2n
i=0 ix2m+izx2n−i +∑2n

i=0(2n− i)xizx2(m+n)−i

+∑2n
i=0 xi(∑2m

j=0 x jzx2m− j)x2n−i

= x2m+1zx2n−1 +2x2m+2zx2n−2 + · · ·+2nx2(m+n)z

+2nzx2(m+n) +(2n−1)xzx2(m+n)−1 + · · ·+ x2n−1zx2m+1

+∑2n
i=0 xi(∑2m

j=0 x jzx2m− j)x2n−i

Moreover expanding the last summand yields

∑2n
i=0 xi(∑2m

j=0 x jzx2m− j)x2n−i = zx2m+2n +2xzx2m+2n−1 +3x2zx2m+2n−2

+ · · ·+(2n+1)x2nzx2m

+ · · ·+(2n+1)x2mzx2n

+2nx2m+1zx2n−1 + · · ·+ x2m+2nz

Therefore ϕmϕn(z) = (2n+1)ϕm+n(z).

Proposition 3.4. The Lie bracket is given by
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(i) [ϕm,ϕn] = 2(n−m)ϕm+n,

(ii) [ϕm,ρn] = (2n+1)ρm+n,

(iii) [ρm,ρn] = 0.

Proof. In each case, both expressions coincide on the generators, by Lemma 3.3. Therefore
they are equal as derivations.

Remark 3.5. We observe the following facts.

(1) If we put ei = [ϕi]/2, then the Lie algebraQ< e1,e2,e3, · · ·> is the Witt algebra W+.
In particular it is generated by e1 and e2.

(2) Q< [ϕi] >⊕Q< [ρi] > is a Z2-graded algebra where |ϕi|= 0 and |ρi|= 1.

We can generalize the following:

Theorem 3.6. If X is a product of k spheres S2ni , i = 1, · · · ,k, HH∗(XS1
) contains a product

of the Witt algebras W+⊕·· ·⊕W+.

Proof. The product X = S2n1×S2n2×·· ·×S2nk admits a model (T (V0⊕V1⊕·· ·⊕Vk−1),d),
where

V0 =< x1, · · · ,xk >, V1 =< y1, · · · ,yp >,. . .

such that dV0 = 0, dVi ⊂ T (V≤i). Moreover

H∗(TV,d)∼= H0(TV,d)∼= T (V0)/(dV1).

Define
ϕm,i(xi) = x2m+1

i ,ϕm,i(x j) = 0 for i 6= j.

We wish to extend inductively ϕm,i on V1⊕ ·· ·⊕Vk−1 into a derivation that is a cycle
but not a boundary. Assume that ϕm,i is defined on V0, · · · ,Vt , (t ≥ 1) such that

[d,ϕm,i] = 0 on V0, . . . ,Vt and ϕm,i(Vt)⊂ (T (V ))t,∗.

This is easily done for t = 1. Now take v ∈Vt+1. By induction hypothesis

0 = [d,ϕm,i](dv) = d(ϕm,i(dv)) ∈ (T (V ))t,∗.

As H∗(TV,d)∼= H0(TV,d), there is v′ ∈ (T (V ))t+1,∗ such that dv′= ϕm,i(dv), define ϕm,i(v)=
v′. Clearly [d,ϕm,i] = 0 on Vt+1 as well.

Using a similar argument as in proof to Proposition 3.2, it is easily seen [ϕm,i,ϕn,i] =
2(n−m)ϕm+n,i (Proposition 3.4).

Let us show that for i 6= j, [ϕm,i,ϕn, j] = 0. Observe that [ϕm,i,ϕn, j] = 0 on V0 and
ϕm,i(v)⊂ (v) for v ∈V0. Take v ∈V1,∗. As ϕm,i and ϕn, j are cycles therefore,

0 = [d, [ϕm,i,ϕn, j]](v1) = d([ϕm,i,ϕn, j](v1))− [ϕm,i,ϕn, j](dv1)
= d([ϕm,i,ϕn, j](v1)),
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as dv1 ∈ T (V0) for v1 ∈V1 and [ϕm,i,ϕn, j](dv1) = 0. Since [ϕm,i,ϕn, j](v1)⊂ T (V )≥1,∗, there
exists w ∈ T (V )≥2,∗ such that [ϕm,i,ϕn, j](v1) = dw. Define a derivation α by α(V0) = 0 and
α(v1) = w. It follows that [ϕm,i,ϕn, j] = [d,α] on V0⊕V1.

Extending inductively, assume that α is defined on V0⊕V1⊕·· ·⊕Vt−1 such that [ϕm,i,ϕn, j] =
[d,α]. Take vt ∈Vt ,

0 = [d, [ϕm,i,ϕn, j]](vt) = d([ϕm,i,ϕn, j](vt))− [ϕm,i,ϕn, j](dvt)
= d([ϕm,i,ϕn, j](vt))− [d,α](dvt)
= d([ϕm,i,ϕn, j](vt))−dα(dvt)
= d([ϕm,i,ϕn, j](vt)−α(dvt)).

As [ϕm,i,ϕn, j](vt)−α(dvt)∈T (V )≥t,∗, there exists w′ ∈T (V )≥t+1,∗ such that [ϕm,i,ϕn, j](vt)−
α(dvt) = dw′.

It comes from Proposition 3.4 that [ϕm,i,ϕn,i] = 2(n−m)ϕm+n,i on V0. From the above
discussion, one can easily deduce that [ϕm,i,ϕn,i] and 2(n−m)ϕm+n,i represent the same ho-
mology class in D̃erTV . In the same way, we put ei

m = [ϕm,i]/2, W+,i =Q< ei
1,e

i
2,e

i
3, . . . >

is isomorphic to the Witt algebra W+.
Consequently HH∗(XS1

) contains a product of the Witt algebras W+,1⊕·· ·⊕W+,k.

Remark 3.7. Similarly, define ρm,i(xi) = x2m+2
i and ρm,i(x j) = 0 for i 6= j. They can be

extended into non zero homology classes of D̃erTV of odd degree. The even and odd
families of derivations ϕm,i ∈ L0̄, ρn,i ∈ L1̄ are compatible with the gradation

[L0̄,L0̄]⊆ L0̄, [L1̄,L1̄]⊆ L0̄,
[L0̄,L1̄]⊆ L1̄, [L1̄,L0̄]⊆ L1̄.

Hence L0̄⊕L1̄ is a Z2-graded algebra.
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[7] Y. Félix, J.-C. Thomas, and M. Vigué-Poirrier, Rational String Topology, J. Eur. Math.
Soc. (JEMS), 9 (2007), no. 1, 123-156.

[8] V. G. Kac, Lie superalgebras, Advances in Math., 26 (1977), no. 1, 8-96.

[9] M. Schlessinger and J. Stasheff, Deformations theory and rational homotopy type,
preprint (1982).


