STRING HOMOLOGY OF A PRODUCT OF SPHERES AND THE WITT ALGEBRA

J.-B GATSINZI*

Department of Mathematics, University of Botswana, Private Bag 0022, Gaborone, Botswana.

R. KWASHIRA[†]

Department of Mathematics, University of Botswana, Private Bag 0022, Gaborone, Botswana.

Abstract

Let X be a finite product of even dimensional spheres, we show that the string homology of X contains a finite product of copies of the Witt Lie algebra.

AMS Subject Classification: Primary 55P62; Secondary 16E40, 55P35.

Keywords: Hochschild cohomology, free loop space, Lie algebra of derivations, Witt algebra.

1 Introduction

In this paper, all homology coefficients are taken in the field of rational numbers \mathbb{Q} . By the work of Chas and Sullivan [2], the desuspended homology of the free loop space on an n-dimensional manifold M, $\mathbb{H}_*(M^{S^1}) = H_{*-n}(M^{S^1})$ admits a Gerstenhaber structure and in particular a Lie bracket. By Cohen-Jones [3] and Félix-Thomas [6], there is an isomorphism of Gerstenhaber algebras $\mathbb{H}_*(M^{S^1}) \simeq HH^*(C_*(\Omega M), C_*(\Omega M))$. In Félix-Menichi-Thomas [5], for any graded algebra A = (TV, d), $HH^*(A, A)$ can be computed in terms of derivations on A.

Now recall that the rational Witt Lie algebra is the graded Lie algebra $W=< e_i, i \in \mathbb{Z}>$ with the bracket $[e_i,e_j]=(j-i)e_{i+j}$. Denote by W_+ the positive part of W, that is, $W_+=< e_i, i \geq 1>$.

Our main Theorem states.

Theorem. Let M be a product of n even dimensional spheres, then the Lie algebra $HH_*(M^{S^1}) = HH^*(C_*(\Omega M), C_*(\Omega M))$ contains the sub Lie algebra $\bigoplus_{i=1}^n W_i$, where each W_i is isomorphic to the Witt algebra W_+ .

 $^{^*}$ E-mail address: gatsinzj@mopipi.ub.bw. Partially supported by the Abdus-Salam ICTP through the associate scheme.

[†]E-mail address: rkwashira@gmail.com. Partially supported by OEA of the Abdus-Salam ICTP.

2 Hochshild cohomology and derivations

Let (TV,d) denote the tensor algebra TV together with a differential d such that V is the union $V = \cup V(k)$ of an increasing family of subspaces $V(0) \subset V(1) \subset \cdots$ such that d(V(0)) = 0 and $d(V(k)) \subset T(V(k-1))$. This is a quasi-free algebra and for any differential graded algebra (A,δ) there is a quasi-isomorphism of differential graded algebras $(T(V),d) \stackrel{\simeq}{\to} (A,\delta)$ with (T(V),d) a quasi-free algebra [4]. The algebra (T(V),d) is then called a quasi-free model of (A,δ) .

Denote by Der A the differential graded Lie algebra of derivations with the commutator bracket [-,-] and the differential D=[d,-]. The differential graded Lie algebra $\widetilde{\mathrm{Der}}A=\mathrm{Der}A\oplus sA$ is defined as follows [9];

$$D(\alpha + sx) = D(\alpha) + ad_x - sd(x) \quad \text{where} \quad ad_x(y) = xy - (-1)^{|x||y|}yx,$$

$$[\alpha, \beta + sx] = [\alpha, \beta] + (-1)^{|\alpha|}s\alpha(x),$$

$$[sx, sy] = 0 \quad \text{with} \quad \alpha, \beta \in \text{Der } A \text{ and } (sA)_i = A_{i-1}.$$

Let $C^*(A,A)$ denote the Hochshild cochain complex with coefficients in A and $HH^*(A;A)$ the *Hochschild cohomology* of A with coefficients in A. For a supplemented differential graded coalgebra (C,d), $\bar{\Omega}C$ denotes the reduced cobar [4]. The cobar construction permits one to calculate the homology of loop spaces [1], that is, $H_*(\bar{\Omega}C_*(X)) \cong H_*(\Omega X)$.

Proposition 2.1. [5] Let $(TV,d) \stackrel{\simeq}{\to} A$ and $(TW,d) = \bar{\Omega}C$ be quasi-free models, then we have isomorphisms of graded Lie algebras

$$H(\widetilde{\operatorname{Der}}(TW,d)) \cong sHH^*(A;A) \cong H(\widetilde{\operatorname{Der}}(TV,d)),$$

where $A = C^{\vee}$ is the dual differential graded algebra.

Theorem 2.2. [5, Theorem 2] Let A = (TV,d) be a quasi-free algebra. Then there exists quasi-isomorphisms of differential graded Lie algebras

$$s$$
C* $(A;A) \stackrel{\simeq}{\leftarrow} \widetilde{\mathrm{Der}} A \stackrel{\simeq}{\rightarrow} \mathrm{Der} \widetilde{A},$

where
$$\widetilde{A} = (T(V \oplus \mathbb{Q}\varepsilon), \widetilde{d})$$
 with $|\varepsilon| = 1$, $\widetilde{d\varepsilon} = \varepsilon^2$ and $\widetilde{dv} = dv + \varepsilon v - (-1)^{|v|} v \varepsilon$, $v \in V$.

The theory of \mathbb{Z}_2 -graded Lie algebras or Lie Superalgebras has been introduced in [8]. Here we recall the following definition.

Definition 2.3. A *Lie Superalgebra* is a \mathbb{Z}_2 -graded Lie algebra, that is, a \mathbb{Z}_2 -graded vector space $L = L_{\bar{0}} \oplus L_{\bar{1}}$ where $L_{\bar{0}}, L_{\bar{1}}$ denote the even and odd parts respectively; with a bracket multiplication [,] compatible with the gradation, that is,

$$\begin{aligned} [L_{\bar{0}}, L_{\bar{0}}] \subseteq L_{\bar{0}}, & [L_{\bar{1}}, L_{\bar{1}}] \subseteq L_{\bar{0}}, \\ [L_{\bar{0}}, L_{\bar{1}}] \subseteq L_{\bar{1}}, & [L_{\bar{1}}, L_{\bar{0}}] \subseteq L_{\bar{1}}, \end{aligned}$$

and satisfying the following properties.

$$[b,a] = -(-1)^{|a||b|}[a,b] \qquad \text{(Antisymmetry)},$$

$$(-1)^{|a||c|}[a,[b,c]] + (-1)^{|b||a|}[b,[c,a]] + (-1)^{|c||b|}[c,[a,b]] = 0 \quad \text{(Jacobi identity)}.$$

3 Homology of the free loop space of a product of spheres

Let X denote a 1-connected space X. Consider its Quillen model $(\mathbb{L}V, \delta)$ and $(TV, d) = U(\mathbb{L}V, \delta)$, its enveloping algebra. There is a quasi-isomorphism $(TV, d) \stackrel{\simeq}{\longrightarrow} C_*(\Omega X, \mathbb{Q})$. Denote by X^{S^1} the free loop space of X, that is, the space of continuous mappings from the circle S^1 to X.

It comes from [3] and Theorems 1, 2 of [5] the following isomorphisms of graded Lie algebras.

$$H_*(X^{S^1}) \cong HH^*(C^*(X), C^*(X)) \cong HH^*(C_*(\Omega X), C_*(\Omega X)) \cong H_*(\widetilde{\operatorname{Der}}(TV, d)).$$

Our aim is to compute $H_*(\widetilde{\operatorname{Der}}(TV,d))$, when (TV,d) is a model of a product of spheres.

Let $X = S^{2n_1} \times \cdots \times S^{2n_k}$. It is a coformal space of which the Quillen minimal model is a bigraded model $(\mathbb{L}(V_0 \oplus V_1 \oplus \cdots \oplus V_{k-1}), \delta)$ such that

$$\varphi: (\mathbb{L}(V_0 \oplus V_1 \oplus \cdots \oplus V_{k-1}), \delta) \xrightarrow{\simeq} \bigoplus_{i=1}^k \mathbb{L}(x_i)$$

is a quasi-isomorphism, x_i is of bidegree $(0, 2n_i - 1)$ and elements of V_i are of bidegree (i, *). Moreover

- (1) φ is of bidegree (0,0)
- (2) $\delta V_k \subset (\mathbb{L}(V))_{k-1}$
- (3) $H_+(\mathbb{L}(V)) = 0$, $H_0(\mathbb{L}(V)) \xrightarrow{\simeq} \bigoplus_i \mathbb{L}(x_i)$.

We compute the loop space homology in the following case.

Example 3.1. Consider $X = S^2 \times S^2$ and (T(x,y,z),d), where |x| = |y| = 1, |z| = 3, dx = dy = 0, dz = xy + yx, its (TV,d)-model. Here $V_0 = \langle x,y \rangle$, $V_1 = \langle z \rangle$. Consider the even and odd degree derivations

$$\begin{cases} \varphi_{m}(x) = x^{2m+1} \\ \varphi_{m}(y) = 0 \\ \varphi_{m}(z) = \sum_{r+s=2m} x^{r} z x^{s}, & |\varphi_{m}| = 2m \end{cases}$$

$$\begin{cases} \rho_{n}(x) = x^{2n+2} \\ \rho_{n}(y) = 0 \\ \rho_{n}(z) = \sum_{t+l=2n+1} x^{t} z x^{l}, & |\rho_{n}| = 2n+1. \end{cases}$$

Observe that

(i)
$$d(\sum_{r+s=2m} x^r z x^s) = x^{2m+1} y + y x^{2m+1}$$
,

(ii)
$$d(\sum_{t+l=2n+1} x^t z x^l) = y x^{2n+2} - x^{2n+2} y$$
.

Proposition 3.2. φ_m and ρ_n are non vanishing homology classes of $\widetilde{\operatorname{Der}}(T(x,y,z))$.

Proof. We will work with φ_m and a similar argument holds for ρ_n . We show first that φ_m is a cycle. Clearly $(D\varphi_m)(x) = 0 = (D\varphi_m)(y)$, so we need only to verify that $D\varphi_m(z) = 0$.

$$D\varphi_{m}(z) = [d, \varphi_{m}](z)$$

$$= d\varphi_{m}(z) - \varphi_{m}(dz)$$

$$= d\left(\sum_{r+s=2m} x^{r}zx^{s}\right) - \varphi_{m}(xy+yx)$$

$$= x^{2m+1}y + yx^{2m+1} - (\varphi_{m}(x)y + y\varphi_{m}(x))$$

$$= x^{2m+1}y + yx^{2m+1} - (x^{2m+1}y + yx^{2m+1})$$

$$= 0$$

It remains to show that φ_m is not a boundary. Suppose $\varphi_m = D(\varphi + s\alpha)$, where $\varphi \in \text{Der } T(V)$ and $\alpha \in T(V)$. As $\varphi_m(x) = D\varphi(x) + [\alpha, x] = x^{2m+1}$, hence $D\varphi(x) = x^{2m+1} - [\alpha, x]$, $d\varphi(x) = x^{2m+1} - [\alpha, x]$. This is not possible because $\text{Im } d \subset (y)$. Therefore φ_m represents a non vanishing homology class in $H_*(\widetilde{\text{Der }}(T(x, y, z)))$.

Lemma 3.3. (i)
$$\varphi_m \varphi_n = (2n+1) \varphi_{m+n}$$
 on $V = \langle x, y, z \rangle$.

(ii)
$$\varphi_m \rho_n = (2n+2)\rho_{m+n}$$
 on $\langle x, y, z \rangle$.

(iii)
$$\rho_n \varphi_m = \rho_{m+n}$$
 on $\langle x, y, z \rangle$.

(iv)
$$\rho_m \rho_n = 0$$
.

Proof. We will prove only the first relation as the remaining equalities are verified in a similar way. As $\varphi_k(y) = 0$, we need only to check the equality for x and z. Clearly $\varphi_m \varphi_n(x) = \varphi_m(x^{2n+1}) = (2n+1)x^{2(m+n)+1} = (2n+1)\varphi_{m+n}(x)$.

We now compute $\varphi_m \varphi_n(z)$ for $n \le m$, computations are similar for $n \ge m$.

$$\begin{split} \phi_{m}\phi_{n}(z) &= \phi_{m}(\sum_{i=0}^{2n}x^{i}zx^{2n-i}) \\ &= \sum_{i=0}^{2n}ix^{2m+i}zx^{2n-i} + \sum_{i=0}^{2n}(2n-i)x^{i}zx^{2(m+n)-i} \\ &+ \sum_{i=0}^{2n}x^{i}(\sum_{j=0}^{2m}x^{j}zx^{2m-j})x^{2n-i} \\ &= x^{2m+1}zx^{2n-1} + 2x^{2m+2}zx^{2n-2} + \dots + 2nx^{2(m+n)}z \\ &+ 2nzx^{2(m+n)} + (2n-1)xzx^{2(m+n)-1} + \dots + x^{2n-1}zx^{2m+1} \\ &+ \sum_{i=0}^{2n}x^{i}(\sum_{i=0}^{2m}x^{j}zx^{2m-j})x^{2n-i} \end{split}$$

Moreover expanding the last summand yields

$$\sum_{i=0}^{2n} x^{i} (\sum_{j=0}^{2m} x^{j} z x^{2m-j}) x^{2n-i} = z x^{2m+2n} + 2x z x^{2m+2n-1} + 3x^{2} z x^{2m+2n-2}$$

$$+ \dots + (2n+1) x^{2n} z x^{2m}$$

$$+ \dots + (2n+1) x^{2m} z x^{2n}$$

$$+ 2n x^{2m+1} z x^{2n-1} + \dots + x^{2m+2n} z$$

Therefore $\varphi_m \varphi_n(z) = (2n+1)\varphi_{m+n}(z)$.

Proposition 3.4. The Lie bracket is given by

(*i*)
$$[\varphi_m, \varphi_n] = 2(n-m)\varphi_{m+n}$$
,

(ii)
$$[\varphi_m, \rho_n] = (2n+1)\rho_{m+n}$$
,

(*iii*)
$$[\rho_m, \rho_n] = 0$$
.

Proof. In each case, both expressions coincide on the generators, by Lemma 3.3. Therefore they are equal as derivations. \Box

Remark 3.5. We observe the following facts.

- (1) If we put $e_i = [\varphi_i]/2$, then the Lie algebra $\mathbb{Q} < e_1, e_2, e_3, \dots >$ is the Witt algebra W_+ . In particular it is generated by e_1 and e_2 .
- (2) $\mathbb{Q} < [\varphi_i] > \oplus \mathbb{Q} < [\rho_i] > \text{is a } \mathbb{Z}_2\text{-graded algebra where } |\varphi_i| = 0 \text{ and } |\rho_i| = 1.$

We can generalize the following:

Theorem 3.6. If X is a product of k spheres S^{2n_i} , $i = 1, \dots, k$, $HH^*(X^{S^1})$ contains a product of the Witt algebras $W_+ \oplus \cdots \oplus W_+$.

Proof. The product $X = S^{2n_1} \times S^{2n_2} \times \cdots \times S^{2n_k}$ admits a model $(T(V_0 \oplus V_1 \oplus \cdots \oplus V_{k-1}), d)$, where

$$V_0 = \langle x_1, \dots, x_k \rangle, \quad V_1 = \langle y_1, \dots, y_p \rangle, \dots$$

such that $dV_0 = 0$, $dV_i \subset T(V_{\leq i})$. Moreover

$$H_*(TV,d) \cong H_0(TV,d) \cong T(V_0)/(dV_1).$$

Define

$$\varphi_{m,i}(x_i) = x_i^{2m+1}, \varphi_{m,i}(x_j) = 0 \text{ for } i \neq j.$$

We wish to extend inductively $\varphi_{m,i}$ on $V_1 \oplus \cdots \oplus V_{k-1}$ into a derivation that is a cycle but not a boundary. Assume that $\varphi_{m,i}$ is defined on V_0, \cdots, V_t , $(t \ge 1)$ such that

$$[d, \varphi_{m,i}] = 0$$
 on V_0, \dots, V_t and $\varphi_{m,i}(V_t) \subset (T(V))_{t,*}$.

This is easily done for t = 1. Now take $v \in V_{t+1}$. By induction hypothesis

$$0 = [d, \varphi_{m,i}](dv) = d(\varphi_{m,i}(dv)) \in (T(V))_{t,*}.$$

As $H_*(TV, d) \cong H_0(TV, d)$, there is $v' \in (T(V))_{t+1,*}$ such that $dv' = \varphi_{m,i}(dv)$, define $\varphi_{m,i}(v) = v'$. Clearly $[d, \varphi_{m,i}] = 0$ on V_{t+1} as well.

Using a similar argument as in proof to Proposition 3.2, it is easily seen $[\varphi_{m,i}, \varphi_{n,i}] = 2(n-m)\varphi_{m+n,i}$ (Proposition 3.4).

Let us show that for $i \neq j$, $[\phi_{m,i}, \phi_{n,j}] = 0$. Observe that $[\phi_{m,i}, \phi_{n,j}] = 0$ on V_0 and $\phi_{m,i}(v) \subset (v)$ for $v \in V_0$. Take $v \in V_{1,*}$. As $\phi_{m,i}$ and $\phi_{n,j}$ are cycles therefore,

$$0 = [d, [\varphi_{m,i}, \varphi_{n,j}]](v_1) = d([\varphi_{m,i}, \varphi_{n,j}](v_1)) - [\varphi_{m,i}, \varphi_{n,j}](dv_1) = d([\varphi_{m,i}, \varphi_{n,j}](v_1)),$$

as $dv_1 \in T(V_0)$ for $v_1 \in V_1$ and $[\varphi_{m,i}, \varphi_{n,j}](dv_1) = 0$. Since $[\varphi_{m,i}, \varphi_{n,j}](v_1) \subset T(V)_{\geq 1,*}$, there exists $w \in T(V)_{\geq 2,*}$ such that $[\varphi_{m,i}, \varphi_{n,j}](v_1) = dw$. Define a derivation α by $\alpha(V_0) = 0$ and $\alpha(v_1) = w$. It follows that $[\varphi_{m,i}, \varphi_{n,j}] = [d, \alpha]$ on $V_0 \oplus V_1$.

Extending inductively, assume that α is defined on $V_0 \oplus V_1 \oplus \cdots \oplus V_{t-1}$ such that $[\varphi_{m,i}, \varphi_{n,j}] = [d, \alpha]$. Take $v_t \in V_t$,

$$0 = [d, [\varphi_{m,i}, \varphi_{n,j}]](v_t) = d([\varphi_{m,i}, \varphi_{n,j}](v_t)) - [\varphi_{m,i}, \varphi_{n,j}](dv_t)$$

$$= d([\varphi_{m,i}, \varphi_{n,j}](v_t)) - [d, \alpha](dv_t)$$

$$= d([\varphi_{m,i}, \varphi_{n,j}](v_t)) - d\alpha(dv_t)$$

$$= d([\varphi_{m,i}, \varphi_{n,j}](v_t) - \alpha(dv_t)).$$

As $[\varphi_{m,i}, \varphi_{n,j}](v_t) - \alpha(dv_t) \in T(V)_{\geq t,*}$, there exists $w' \in T(V)_{\geq t+1,*}$ such that $[\varphi_{m,i}, \varphi_{n,j}](v_t) - \alpha(dv_t) = dw'$.

It comes from Proposition 3.4 that $[\varphi_{m,i},\varphi_{n,i}]=2(n-m)\varphi_{m+n,i}$ on V_0 . From the above discussion, one can easily deduce that $[\varphi_{m,i},\varphi_{n,i}]$ and $2(n-m)\varphi_{m+n,i}$ represent the same homology class in $\widetilde{\operatorname{Der}}TV$. In the same way, we put $e_m^i=[\varphi_{m,i}]/2$, $W_{+,i}=\mathbb{Q}< e_1^i,e_2^i,e_3^i,\ldots>$ is isomorphic to the Witt algebra W_+ .

Consequently $HH^*(X^{S^1})$ contains a product of the Witt algebras $W_{+,1} \oplus \cdots \oplus W_{+,k}$. \square *Remark* 3.7. Similarly, define $\rho_{m,i}(x_i) = x_i^{2m+2}$ and $\rho_{m,i}(x_j) = 0$ for $i \neq j$. They can be extended into non zero homology classes of $\widetilde{\operatorname{Der}}TV$ of odd degree. The even and odd families of derivations $\varphi_{m,i} \in L_{\bar{0}}$, $\rho_{n,i} \in L_{\bar{1}}$ are compatible with the gradation

$$\begin{array}{ll} [L_{\bar{0}},L_{\bar{0}}]\subseteq L_{\bar{0}}, & \quad [L_{\bar{1}},L_{\bar{1}}]\subseteq L_{\bar{0}}, \\ [L_{\bar{0}},L_{\bar{1}}]\subseteq L_{\bar{1}}, & \quad [L_{\bar{1}},L_{\bar{0}}]\subseteq L_{\bar{1}}. \end{array}$$

Hence $L_{\bar{0}} \oplus L_{\bar{1}}$ is a \mathbb{Z}_2 -graded algebra.

References

- [1] J. F. Adams, On the Cobar Construction, *Proc. of the National academy of Sciences of the United States of America*, **42(7)** (1956), 409-412.
- [2] M. Chas and D. Sullivan, String Topology, math.GT/9911159 (1999).
- [3] R. L. Cohen and J. D. S Jones, A Homotopy Theoretic Realization of String Topology, *Math. Ann.* **324(4)** (2002), 773-798.
- [4] Y. Félix, S. Halperin, and J.-C. Thomas, *Rational Homotopy Theory*, Graduate Texts in Mathematics 205, *Springer-Verlag*, New York, 2000.
- [5] Y. Félix, L. Menichi, and J-.C. Thomas, Gerstenhaber duality in Hochschild cohomology, *J. Pure and Appl. Algebra*, **199** (2005), 43-59.
- [6] Y. Félix and J.-C. Thomas, Rational BV-algebra on String Topology, preprint: math.AT/arXiv: 0705.4194 (2007).

- [7] Y. Félix, J.-C. Thomas, and M. Vigué-Poirrier, Rational String Topology, *J. Eur. Math. Soc. (JEMS)*, **9** (2007), no. 1, 123-156.
- [8] V. G. Kac, Lie superalgebras, *Advances in Math.*, **26** (1977), no. 1, 8-96.
- [9] M. Schlessinger and J. Stasheff, Deformations theory and rational homotopy type, preprint (1982).