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Abstract 
Two test statistics that have been commonly used in analysing interactions in contingency table 
are the Pearson’s Chi-square statistic, χ2, and likelihood ratio test statistic, G2. Both test statistics, 
in tables with sufficiently large sample size, have an asymptotic chi-square distribution with de-
grees of freedom (df) equal to the number of free parameters in the saturated model. For example 
under the hypothesis of independence of the row and column conditioned on the layer in an I × J × 
K contingency table, the df is K(I − 1)(J − 1). These test statistics, in large sized tables, will have less 
power since they have large degrees of freedom. This paper proposes a product effect model, 
which combines the advantages of the multiplicative models over the additive, for analysing the 
interaction between the row and column of the 3-way table conditioned on the layer. The derived 
statistics is shown to be asymptotically chi-square with a small degree of freedom, K − 1, for the I × 
J × K contingency table. The performance of the developed statistic is compared with the Pearson’s 
chi-square statistic and the likelihood ratio statistic test using an illustrative example. The results 
show that the product effect test can detect interaction even when some of the main effects are not 
significant and can perform better than the other competitors having smaller degree of freedom in 
large sized tables. 
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1. Introduction 
A 3-way contingency table is a cross-classification of observations by the levels of three categorical variables—A, 
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B, and C. The levels can be ordinal or nominal. If n units in a sample are independently and identically distributed 
(IID); that is, if they constitute a random sample, then the vector of cell counts { }111 112, , , IJKx n n n′ =   has a 
multinomial distribution with index n n+++=  and a parameter, ijkπ , where ( ), ,ijk P A i B j C kπ = = = =  
probability that a randomly selected unit falls into the ( ), , thi j k  cell of the contingency table with variables A, B 
and C. The probability distribution { }ijkπ  is the joint distribution of A, B, and C. 

Interaction in the 3-way contingency has been tested using the chi-square statistic and the likelihood ratio test 
statistic with ( )( )( )1 1 1I J K− − −  degree of freedom [1]-[3]. Grizzle et al. [4], Darroch [5] and Johnson and 
Graybill [6] have modelled interaction as a product of the marginal effects or components of the ways of classi-
fication of the table. Tukey [7] in order to overcome the difficulty in testing for interaction in the two-factorial 
experiment with one observation per cell modelled the two-factor interaction as a product of the effects of the two 
factors and developed a one degree of freedom F-test for analysing the interaction between the factors. Drawing an 
analogy from the two factorial experiments we can view the 2-way contingency table as a two-factorial experi-
ment with one observation per cell similar to the Poisson modelling of 2-way contingency table where the cell 
observations are seen as the mean number of occurrences of the event within a defined infinitesimal interval. The 
I × J × K contingency table can be viewed as K 2-way contingency table. The present paper argues that the 
transformation of the contingency table applicable in the likelihood ratio tests [1] [8] is often unnecessary but that 
the data can be analysed in a manner similar to the Pearson’s chi-square which does not transform the data. A 
multivariate approach is adopted in analysing the interaction in an I × J × K table, under the product effect model, 
where the three-factor interaction is defined as a product of the effects of the ways of classification of the table. 
The advantage of the proposed model is that it gives rise to chi-square tests with smaller degrees of freedom, ir-
respective of the size of the table, which is conjectured to have greater power than other tests with larger degrees of 
freedom. It has been shown [9] [10] that the power of the noncentral chi-square statistics, for a given value of 
non-centrality parameter and level of significance, increases as the degree of freedom decreases. Our results will 
be of some practical value to researchers who are involved in analysing mutual independence in higher order 
tables as their results will be based on small degrees of freedom leaving extra degrees of freedom for further 
decomposition of other forms of independence in the data. Extension of the proposed method to higher order 
tables is straightforward. 

Model for 3-Factor Interaction 
Let us assume that we have an I × J × K 3-way contingency, representing respectively the row, column and layer 
classifications of the table, and that the K-dimensional vector { }ijk K

n  of frequency layers available in the 
( ), thi j  cell has associated it with a K-dimensional vector { }ijk K

π  of unknown cell probabilities such that  
1ijk

k
π =∑ . In addition if we assume that { }ijk K

n  follows a multinomial probability distribution given by 

( ){ } 1 2.
. 1 2

1 2

!
; ,

! ! !
ij ij ijKn n nij

ijk ijk ij ij ij ijKK
ij ij ijK

n
P n n

n n n
π π π π= 



                     (1.1) 

.ij ijk
k

n n= ∑  is fixed, 1, 2, , ;ijk ijn n=   0 1,ijkπ< <  .ijk ijk ij
n nπ =  

( ) ( ).

.

1 ,
,

,
ij ijk ijk

ijk ijk
ij ijk ijk

n k k
Cov n n

n k k

π π

π π
′

′

 ′− == 
′− ≠
 

{ },ijk ijkn n ′  are independent for all .k k ′≠  
The 3-way contingency table under the multinomial structure described above is similar to the layout of a 

three-factorial experiment with one observation per cell. In the spirit of [7] and drawing an analogy from the 
factorial experimental structure, a linear additive model for the observed cell probability in the ( ), ,i j k -cell can 
be written as in (1.2). The interest is in the consideration of models where these probabilities depend on a vector 

ix  of covariates associated with the ( ), , thi j k  individual or group. 
Under the assumption (1.1), and given the thk  layer, we have an identity relation 

.. . .. . .. . . ..ijk k i k k jk k ijk i k jk kπ π π π π π π π π π= + − + − + − − +                     (1.2) 

where, ..kπ , .i kπ  and . jkπ  denote respectively the overall probability for the kth layer, ith row, and jth column 
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for the kth layer. Reasoning by analogy from the regular analysis of variance, we get a linear additive model for 
(1.2) as 

( )ijk k ik jk ijkE π µ τ β λ= + + +                                 (1.3) 

where, ..k kµ π=  is the overall probability of an observation belonging to the kth layer of the 3-way contingency 
table; . ..ik i k kτ π π= −  is the effect of the ith row of the table for the kth layer; . ..jk jk kβ π π= −  is the effect of the 
jth column of the table for the kth layer; . . ..ijk ijk i k jk kλ π π π π= − − +  is the interaction between the ith row and jth 
column for the kth layer of the table. These parameters are subject to the restrictions: 

. . . . .0;      0ij ik ij jk ij ijk ij ijk ij ijk
i j i j ij

n n n n nτ β λ λ λ= = = = =∑ ∑ ∑ ∑ ∑                   (1.4) 

and are independent of the kth layer. 
The relation (1.3) can be recast in vector notation as 

( ) ( )ij ij i j ijE n n µ τ β λ= + + +                                (1.5) 

Or 

( ) ( )ij i j ijE π µ τ β λ= + + +                                 (1.6) 

where, 

( ) ( ) ( ) ( )

( ) ( )

( )

1 2 1 2 1 2 1 2,

1 2 1

, , , ;  , , , ;  , , , ;  , ,

 in the main diagonal

 in the off diagonal positions

diag , , , ;  ,

K i i i iK j j j jK ij ij ij ijK

ij ij ij ij
ij

ij ij ij

ij ij ij ijK ij ij i

n D
Cov n

n

D

µ µ µ µ τ τ τ τ β β β β λ λ λ λ

π π

π π

π π π π π π

′′ ′ ′= = = =

 ′−= 
′−

′= =

   

 ( )2 , , .j ijKπ

      (1.7) 

Estimation of the parameters of this model (1.6) by maximum likelihood proceeds by maximization of the 
multinomial likelihood (1.1) with the probabilities ijkπ  viewed as functions of the parameters ..kµ , .i kτ , . jkβ , 
and ijkλ  in the Equation (1.3) and yields 

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ;   ;   ;   i i j j ij ij i jµ π τ π π β π π λ π π π π= = − = − = − − +                     (1.8) 

where, 

( ) ( )
( ) ( ) ( )

. .. . . ..1 ..2 .. .1 .2 .

. 1 . 2 . 1 2 ... ..1 ..2 ..

... .. . .

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ;   ;   ;   , , , ;   , , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , ;   , , , ;   ;   , , ,
ij ij ij i i i j j j K i i i i K

j j j jK ij ij ij ijK K

ij i j
ij i

n n n n n n

n n n n n n

n n n n

π π π π π π π π π π π

π π π π π π π π π

′ ′= = = = =

′ ′ ′ ′= = = =

= = =∑ ∑

 

  

.ijk
j ijk

n=∑ ∑
 

The matrix n  is given as 

111 121 1 1 211 221 2 1 11 21 1

112 122 1 2 212 222 2 2 12 22 2

11 12 1 21 22 2 1 2

, , , , , , , , ,
, , , , , , , , ,

, , , , , , , , ,

J J I I IJ

J J I I IJ
K IJ

K K JK K K JK I K I K IJK

n n n n n n n n n
n n n n n n n n n

n

n n n n n n n n n

×

 
 
 =
 
 
 

   

   

   

   

 

For the kth layer, the interaction between the ith row and jth column is defined multiplicatively as being propor-
tional to the ith row effect and jth column effect and given as 

ijk k ik jkcλ τ β=                                     (1.9) 

where, ck is an unknown constant for the layer; ikτ  and jkβ  are respectively the effect of the ith row and jth 
column for the kth layer. The model (1.9) is referred to as the product effect model [2] [3]. The classical method 
of partitioning the chi-squares for the 3-way ( )I J K× ×  contingency table does not provide a convenient test 
of the null hypothesis that the 3-way interaction is zero [11]. The model indicates that the three-factor interac-
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tion in the contingency table and for the kth layer response is proportional to the product of the effects of ith row 
classification and the jth column classification of the table. Darroch [12] has demonstrated the advantages of the 
multiplicative interaction models over the additive. 

2. Development of Test Statistics Based on the Model τλ βijk k ik jkc=  
Rewriting (1.9), the model for the two-factor interaction for the kth layer response, in vector notation, 

ij cD Dτ βλ =                                       (2.1) 

where ( ) ( ) ( )1 2 1 2 1 2, , , ;  diag , , , ;  diag , , , .K i i iK j j jKc c c c D Dτ βτ τ τ β β β= = =  

 The matrix of interaction Λ  can be written as 

1 11 11 1 11 21 1 11 1 1 21 11 1 21 21 1 21 1 1 1 11 1 1 21 1 1 1

2 12 12 2 12 22 2 12 2 2 22 12 2 22 22 2 22 2 2 2 12 2 2 22 2 2 2

1 1 1 2

, , , , , , , , ,
, , , , , , , , ,

, ,

J J I I I J

J J I I I J
c

K IJ

K K K K K K

c c c c c c c c c
c c c c c c c c c

c c

τ β τ β τ β τ β τ β τ β τ β τ β τ β
τ β τ β τ β τ β τ β τ β τ β τ β τ β

τ β τ β
×
Λ =

   

   

   

 1 2 1 2 2 2 1 2, , , , , , ,K K JK K K K K K K K K JK K IK K K IK K K IK JKc c c c c c cτ β τ β τ β τ β τ β τ β τ β

 
 
 
 
 
   

 (2.2) 
From (1.5) or (1.6) the residual after substituting (2.1) becomes 

( ) ( )ij ij ij ijE Z n n cD Dτ βλ= =                               (2.3) 

( ) ( )ˆ ˆˆ ˆ ˆ ˆ ˆij ij i j ij ij i jZ n nπ µ τ β µ τ β= − + + = − + +                        (2.4) 

( )1 2, , ,ij ij ij ijKZ Z Z Z′ =   

This gives the least square estimate ĉ  of c  as 

2 2

ˆˆ ˆˆ
ˆ ˆ ˆ ˆˆ ˆ ˆ

ijk ik jk
jij i

k ij
ij ik ij ij i i ij j j

ij

n
c n

n n n

τ β
βτ

τ β τ τ β β

′ 
 = = ⊗
 ′ ′ 

∑

∑
                       (2.5) 

The matrix of sum of squares sum of product (SS-SP) for interaction from (2.3) is 

( )

2 2 2ˆˆ ˆ at the -th diagonal position

ˆ ˆˆ ˆ ˆ ˆ at the , th off diagonal position

k ij ij jk
ij

c c c
k k ij ik ik jk jk

ij

c n k
H

c c n k k

τ β

τ τ β β′ ′ ′




′Λ Λ = = 
′



∑

∑
           (2.6) 

with expectation 

( )

( )
2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

ˆˆ ,

ˆ ˆ ˆˆ ˆ ˆ1 at the -th diagonal position

  ˆ ˆˆ ˆ
ˆˆ ˆˆ ˆ

c ik jk

ij ijk ijk ik jk k ik ik jk jk ij ik jk
ij ij ij

ij ijk ijk ik ik jk jk
ij

k k ij
ij ik ik jk jk

ij

E H

n c n k

n
c c n

n

τ β

π π τ β τ τ β β τ β

π π τ τ β β

τ τ β β

′ ′ ′

′
′ ′

  
 − +  
   

=

− +

∑ ∑ ∑

∑

∑
( )ˆ ˆˆ at the ,  of diagonal positionik ik jk jk

ij
k kτ τ β β′ ′








′



∑

 (2.7) 

The total sum of squares and cross product (SS-SP) is given as 

( )ˆ ˆT TH n D ππ ′= −                                   (2.8) 

where,  

( )..1 ..2 ..ˆ ˆ ˆdiag , , ,T KD π π π=                                (2.9) 
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The expectation of TH  is 

( ) ( )1TE H n V= −  

( )
..

.. ..

1 at the -th diagonal position

at the ,  off diagonal position
k

th
k k

k
V

k k

π

π π ′

−= 
′−

                   (2.10) 

The total SS-SP matrix TH  can be partitioned into unit SS-SP, uH , SS-SP due to the row effect, Hτ , 
SS-SP due to the column effect, Hβ , and SS-SP due to the residual, zH , namely 

T u zH H H H Hτ β= + + +                               (2.11) 

The unit SS-SP matrix uH  is given by 

( )ˆ ˆu ij u ij ij
ij

H n D π π ′= −∑                                (2.12) 

with ( )1 2ˆ ˆ ˆdiag , , , .u ij ij ijKD π π π=   
The expectation of uH  is given by 

( ) ( ) ( )
( )

1 at the -th diagonal position
1

at the ,  off diagonal position

ijk ijk
u ij th

ij ijk ijk

k
E H n

k k

π π

π π ′

 −= − 
′−

∑             (2.13) 

The matrix of SS-SP for the row effect, Hτ , is 

( )

2
..

..
..

ˆ at the -th diagonal position
ˆ ˆ

ˆ ˆ at the ,  off diagonal position

i ik
i

i i i
i i ik ik

i

n k
H n

n k kτ

τ
τ τ

τ τ ′


′= =  ′


∑
∑ ∑

              (2.14) 

With expectation, 

( )E H D Vτ τ τ= +                                   (2.15) 

( )1 2diag , , , KD b b bτ =   and 

( ) ( )

( )

. . .. ..

. . .. .. .. . . .. ..

1 1 at the -th diagonal position

at the ,  off diagonal position

i k i k k k
i

i k i k k k i i k i k k k
i i

k
V

n n k kτ

π π π π

π π π π π π π π′ ′ ′ ′

− − + −
=  ′+ + −


∑

∑ ∑
     (2.16) 

2
..k i ik

i
b n τ= ∑  

The matrix of SS-SP, Hβ , due to the column effect is 

( )

2
. .

. .
. .

ˆ at the -th diagonal position
ˆ ˆ

ˆ ˆ at the ,  off diagonal position

j jk
j

j j j
j j jk jk

j

n k
H n

n k k
β

β
β β

β β ′




′= = 
′



∑
∑

∑
           (2.17) 

With expectation, 
( )E H D Vβ β β= +                                  (2.18) 

( ) 2
1 2 . .

ˆdiag , , , ;  K k j jk
j

D t t t t nβ β= =∑  

and 

( ) ( )

( )

. . .. ..

. . .. .. . . . . .. ..

1 1 at the -th diagonal position

at the ,  off diagonal position

jk jk k k
i

jk jk k k j jk jk k k
j j

k
V

n n k kβ

π π π π

π π π π π π π π′ ′ ′ ′

− − + −
=  ′− + + −


∑

∑ ∑
    (2.19) 
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The matrix of SS-SP for the residual (2.3) is 

( )( ) ( ) ( ) ( )

( )

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

z ij ij ij ij ij i j ij i j
ij ij

ij ij ij ij ij i ij ij j ij i ij
ij ij ij ij

ij j ij ij i i ij i j ij j i
ij ij ij ij

H n z z n

n n n n

n n n n n

π π τ β π π τ β

π π π π π π τ π π β τ π π

β π π τ τ τ β β τ

′   ′= = − − − − − −   

′ ′′ ′= − − − − − − − −

′ ′ ′ ′− − + + + +

∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ˆ ˆ .ij j j
ij

β β ′∑

       (2.20) 

With expectation 

( ) ( )( ) ( ) ( )ˆ ˆˆ ˆ ˆ ˆ ˆ ˆz ij ij ij ij i ij j j
ij ij ij

E H n E n E n Eπ π π π τ τ β β′ ′ ′= − − + +∑ ∑ ∑              (2.21) 

Since the cross-product terms will vanish on taking expectation because of independence and restriction in 
(1.4) 

( )( ) ( )
( )( ) ( )

2
..

.. ..

ˆ ˆ at the  diagonal position
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ at the ,  off diagonal position

th
ijk k

ij ij

ijk k ijk k

E k
E

E k k

π π
π π π π

π π π π′ ′

 −′− − = 
′− −

      (2.22) 

Hence,  

( )z z zE H D V= +                                   (2.23) 

where,  

zD D D Dθ τ β= + +                                  (2.24) 

and 

( ) ( )2
1 2 ..diag , , , ,  with K k ij ijk k

ij
D q q q q nθ π π= = −∑  

zV V V Vθ τ β= + + , with 

( ) ( )

( ) ( ) ( )

.. ..

.. ..

1 1 at the  diagonal position

1 1 at the ,  off diagonal position

th
ijk ijk k k

i

ij ijk ijk k k
ij

k
V

n n k kθ

π π π π

π π π π′ ′

− − − −


= 
′− − + −



∑

∑
        (2.25) 

The hypothesis of no interaction, 0 : 0ijkH λ = , for all k, implies that either 0kc =  or 0ikτ =  or 0jkβ =  
for all k. 

Hence 

0 0 0 0: 0 : 0 or : 0 or : 0ij i jH H c H Hλ τ β= ⇒ = = = .                  (2.26) 

Under the null hypothesis (2.26), in which case ..ijk kπ π= , and reasoning from (2.13) for the thk  layer, 
( ) ( ) .uE H n IJ V= −  
Similarly, . ..i k kπ π= ; . ..jk kπ π=  (see Section 1.1) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 ;  1 ,   and 1 1c zE H I V E H J V E H V E H I J Vτ β= − = − = = − −       (2.27) 

However, whether or not 0 : 0H c =  is true, 

( ) ( )1TE H n V= −  

where V is as defined in (2.10). Each of the quantities ( ) 1
un IJ H−− , ( ) 11I Hτ

−− , ( ) 11J Hβ
−− ,  

( )( ) 1
1 1 zI J H

−
− −   , ( ) 11 Tn H−−  and cH  provides an estimate of V and can be employed in the construction 

of tests of significance of the row, column effects and interaction provided that they are independent. 
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Independence of HT, Hc, Hτ, Hβ 
By appealing to the following theorem [13], it can be shown that the quadratic forms HT, Hc, Hτ and Hβ, are in-
dependent. 

Theorem 2.1. Let Y  be distributed ( ),N Iµ , the set of positive semi-definite quadratic forms 1Y B Y′ , 
2Y B Y′ ,  , KY B Y′  are jointly independent if and only if 0i jB B = , the null matrix for all i j≠ . 

Theorem 2.2. As ijn →∞ , the matrices TH , cH , Hτ  and Hβ  are independent. 
By theorem 1, the joint independence of HT, Hc, Hτ and Hβ implies pairwise independence. 

3. Construction of Test Statistic for the Hypothesis 0 : = 0H c  

Recall that ijkn  follows ( ). ,ij ijkM n π . As ijkπ  tends to a constant, say 1
K

, then ijn  will follow asymptotic  

multivariate normal distribution with mean ij ijn π  and variance, ij ijn V , where ijV  is a singular matrix given by 
(1.7). Therefore ijn  has a singular normal distribution. 

Under the hypothesis, 0 : 0H c = , the matrix Hc has a pseudo Wishart distribution with parameter 1 and  
ij ij

ij
V n V= ∑ . The random matrix HT follows the Wishart distribution with parameter ( )1n −  and V and inde-  

pendent of Hc. They can be used in constructing the determinant based test statistic for the hypothesis 0 : 0H c =  
Since the matrix V is nonsingular, by generating the matrix of contrasts, say B and pre- and post-multiplying 

each of them by B and B transpose, V can be made non-singular. 
Let  

( )1 2, , ,c Km m m′ ′ ′Λ =                                   (3.1) 

km′  is an IJ  column vector of independent variables for the kth response. Also define ( )1 2 1, , , KX X X X −′ ′ ′ ′=   
such that 

1 1

2 2

1 1

 

K

K

K K K

X m m
X m m

X m m− −

= −
= −

= −


 

Then  

cX B= Λ                                      (3.2) 
where 

( )
1

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1

; 1

0 0 0 1 1

d
K K

I
− ×

− 
 − 
 −

= = − 
 
 
 

−  







     

     



B                         (3.3) 

The matrix B is of full rank, ( )1K −  and dI  is a ( ) ( )1 1K K− × −  identity matrix. 
Certainly, 

*
c c c cH X X B B BH B′ ′ ′ ′= = Λ Λ =                              (3.4) 

is a non-singular transformation of the matrix Hc and so also is the matrix 

( ) ( )

*

1 1
TT

K K
BH BH

− × −

′=                                   (3.5) 

The hypothesis 
: 0cH c =  
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is similarly transformed to 
* : 0cH Bc =  or * *: 0cH c =  

However, [14] and [15] have discussed the equivalence between 0H  and *
CH  and the invariant property of 

the Wilks Λ  criterion under such transformation as above. Also the quadratic forms *
TH  and *

CH  (3.4 and 3.5) 
are independent Wishart distributed matrices with same degrees of freedom as TH  and cH  respectively and 
variance-covariance matrix *V BVB′= . Hence the analogue of the Wilks criterion can be used in testing the 
hypotheses and is given by 

( )
*

* *
, 1,1 ,  asymptoticallyT

c
T C

H
W n K

H H
= ≈ Λ −

+
                     (3.6) 

where ( ) ; ; Λ  defines the Wilks distribution with parameters ( ) ; ; . It has been shown (see e.g. Kshirsagar, 1972) 
that 

( )
1

2

1
1

K

c i
i

W r
−

=
= −Π                                    (3.7) 

where 2
ir  is the square of the ith sample canonical correlation and the root of the determinantal equation 

( )2 * * * 0T C Cr H H H− + + =                                (3.8) 

and 2r  is related to λ  the root of the determinantal equation 

( ) * 1 *
1 11 0T c K Kn k H H I Iλ−
− −− − − − =                            (3.9) 

by the relation 

( ) ( )2 1r n Kλ λ= + − +                               (3.10) 

Under the null hypothesis, * *: 0cH c =  and using (3.9), that is 0λ = , 2 1r
n K

=
−

. 

It has been shown, [16], that 
2log c pqm W χ− ≈  

where 1pq K= − , using the notation in this paper. 
Thus, 

( ) ( ) ( ) ( )
11

2 2 2

1 1
log log 1 log 1 1 log 1

KK

c i i
i i

m W m r m r m K r
−−

= =

− = − − = − − = − − −∑Π            (3.11) 

under 0H . 
Asymptotically as 2 0r → , 

( ) ( ) ( )2 2 2 1
log 1  and log 1c

m K
r r m W m K r

n K
−

− = − − = − =
−

                 (3.12) 

Hence 

( ) 2
1

1
K

m K
n K

χ −

−
≅

−
                                 (3.13) 

The best value of m for the expectation on both sides of (3.13) to be equal is ( )n K− . 
Therefore, 

*
2

1* *

T
c K

T C

H
W

H H
χ −= ≅

+
                               (3.14) 

and can provide a test criterion for the rejection or non-rejection of 0 : 0.H c = . 
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The test rejects the hull hypothesis if ( )2
1c KW χ α−≥  at an α -level of significance. 

4. Illustrative Example 
The application of the developed test makes use of data taken from [17] (see Table 1). The data represent the at-
titude of 333 undergraduate students of University of Nigeria towards taking up teaching as a profession after 
graduation. The students were sampled from three groups of faculties, 1F , 2F  and 3F . The responses Y (yes), 
N (no), U (undecided) indicates willing, not willing and undecided respectively. 

The estimates of the parameters in (1.5) are: 

( )ˆ 0.4444,0.4655,0.0901µ′ = ; ( )1 0.07538, 0.0822,0.006826τ ′ = − ; ( )2 0.16144,0.17604, 0.01462τ ′ = − ; 

( )1̂ 0.00966, 0.00170,0.01136β ′ = − − ; ( )2
ˆ 0.00703, 0.00133, 0.00570β ′ = − − ;  

( )3
ˆ 0.03704,0.01602,0.02102β ′ = − ; ( )3.44857, 111.16428, 267.82464c ′ = − − ; 

( )11 0.00251, 0.01583, 0.02072λ′ = − − −


; ( )12 0.00183, 0.01248,0.01042λ′ = −


; 

( )13 0.00963,0.146101, 0.03836λ′ = − −


; ( )21 0.00538,0.03389,0.04446λ′ =


; 

( )22 0.00392,0.02671, 0.02238λ′ = − −


; ( )23 0.02062, 0.31268,0.08232λ′ = −


 

The matrix of SS-SP due to interaction, cH , is 

0.00815 0.08882 0.03952
0.08882 1.38108 0.34844

0.03952 0.3484 0.20826
cH

− 
 = − − 
 − 

; 
1 0 1
0 1 1

B
− 

=  − 
 

Therefore,  
* 0.13737 0.42836

0.42836 2.28622cH  
=  
 

; * 136.18734 14.28710
14.28710 138.08711TH

− 
=  − 

; 

* 4.351971 2.172384
2.172384 5.652110

Hτ
 

=  
 

; * 0.159903 0.039964
0.039964 0.016973

Hβ
 

=  
 

; 

* * 18944.28795T cH H+ = ; * 18601.59497TH =  

Similarly, 
* * 20054.2446TH Hτ+ =  

* * 18627.1301TH Hβ+ =  

These values are summarized in the Table 2. 
 
Table 1. Attitude of university students towards the teaching profession. 

Sex (i) 

Faculty (j) 

(F1) (F2) (F3) 

Response (k) 
1in  

Response (k) 
2in  

Response (k) 
3in  

Y N U Y N U Y N U 

Male 23 19 5 47 88 58 16 162 7 10 1 18 

Female 7 13 2 22 19 52 4 75 4 3 2 9 

n.jk 30 32 7  107 110 20  11 13 3  

n.j 69  237  27  
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Table 2. Multanova of categorical data for attitude of students towards teaching. 

SV d.f SS-SP Ratio of determinants Hypothesis loge cm W−  Decision 

Sex 1 *Hτ  
*

* *
0.9115T

T

H
H Hτ

=
+

 *
0 : 0iH τ =  30.579 H0 is rejected 

Faculty 2 *H β  
*

* *
0.999T

T

H
H H β

=
+

 *
0 : 0jH β =  0.330 H0 is not rejected 

Interaction 
(faculty × sex) 2 *

cH  
*

* *
0.981T

T c

H
H H

=
+

 *
0 : 0H c =  6.33 H0 is rejected 

Response 327 *
uH  -    

Total 332 *
TH  -    

m = 330. 
 

The Pearson’s chi-square for testing the hypothesis of no interaction (independence of the row and column for 
the kth response), 0 . .: ijk i k jkH π π π=  gives the computed value of the test statistic as, X2 = 8.214 based on 6 d.f 
while the likelihood ratio test statistic, G2 for testing H0 is calculated as G2 = 7.804. Both test statistics are based on 
6 degrees of freedom and show that interaction is not significant. 

5. Conclusion 
The results of the analysis show that while the effect of the sex and interaction are significant in the data, the effect 
of faculty is not significant. Thus, the proposed test for interaction based on the product effect model and based on 
2 degrees of freedom ( )1K −  can produce significant results even when one of the factors in the interaction is not 
significant. The test performs better than the traditional tests—the Pearson’s chi square and the likelihood ratio 
tests, and could still out perform them in having greater power in larger 3-way contingency tables since it will have 
smaller degree of freedom. [9] has shown that the power of the non-central chi-square test at a given level of 
significance and non-centrality parameter increases as the degree of freedom decreases. 
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