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Abstract
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1 Introduction
The Vitali Covering Lemma that has widespread use in analysis essentially states that given a set
E ⊂ Rn with Lebesgue measure λ(E) < ∞ and a cover of E by balls of ’arbitrary small Lebesgue
measure’, one can find almost cover of E by a finite number of pairwise disjoint balls from the given
cover. The more elaborate and more powerful Besicovitch Covering Lemma [1, 2] is known to work
for every locally finite Borel measures. Its setting is a finite-dimensional normed space X. For an
arbitrary A ⊂ X, and a family of balls B(a, ra) such that a ∈ A and supa∈A ra < ∞, the theorem
states that there exists a constant K depending only on the normed space X such that for some
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m < K, one can find m disjoint subsets Ai such that for each Ai, the balls B(ai, rai) are pairwise
disjoint and

⋃m
i=1

⋃
a∈Ai

B(a, ra) still covers A. The Besicovitch Covering Lemma is used to prove
the important Lebesgue-differentiation Theorem:

Theorem 1.1. Let µ be a locally finite Borel measure on Rn. Given x ∈ suppµ, f ∈ L1(Rn, µ), then

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

fdµ = f(x), µ− a.e.

Here, suppµ is Ω \ U , where U is the largest open set such that µ(U) = 0 and B(x, r) is the ball
centered at x of radius r.

Such a theorem provides an important tool in many areas of analysis, such as, partiall differential
equations, harmonic analysis, probability, integral operators, approximation theory, to name just a few.
Obviously, such a theorem has several proofs, and extensions in the literature (see e.g. [3, 4, 5, 6, 7]).

The aim of this note is to give a more general, non-metric Besicovitch Covering Lemma that
works for any size function (see definition in Section 2) and that will permit to further extend the
scope of the Lebesgue Differentiation Theorem to the more general setting of the integral of vector
valued functions as introduced in [8] (further developed in [9]).

2 Extended Notion of Integrability
In this section, we recall the main points in the definition of the extended notion of integrability as
introduced in [8]. A size function is set function µ : Σ ⊂ 2Ω → [0,∞] defined on a semiring Σ of
subsets of Ω satisfying

• µ(∅) = 0;

• µ(A) ≤ µ(B) whenever A ⊂ B in Σ (monotonicity)

• µ(
⋃
n∈N

An) ≤
∑
n∈N

µ(An) for every sequence n 7→ An in Σ such that
⋃
n∈N

An ∈ Σ (countable

subadditivity).

A Σ-subpartition P of a subset A ∈ 2Ω is any finite collection {Ii; Ii ⊂ A, Ii ∈ Σ, i = 1, 2 . . . , n} with
the following properties that µ(Ii) <∞ for all i ∈ {1, . . . , n}, Ii ⊂ A, Ii ∈ Σ and Ii ∩ Ij = ∅ whenever
i 6= j. A Σ-subpartition P = {Ii : i = 1, . . . , n} is said to be tagged if a point ti ∈ Ii is chosen for
each i ∈ {1, . . . , n}. We write P := {(Ii, ti) : i ∈ {1, . . . , n}} if we wish to specify the tagging points.
We denote by Π(A,Σ) the collection of all tagged Σ-subpartitions of the set A. The mesh or the norm
of P ∈ Π(A,Σ) is defined to be ‖P‖ = max{µ(Ii) : Ii ∈ P}.

If P,Q ∈ Π(A,Σ), we say that Q is a refinement of P and we write Q � P if ‖Q‖ ≤ ‖P‖ and⊔
P ⊂

⊔
Q. It is readily seen that the relation � is transitive on Π(A,Σ), and if P,Q ∈ Π(A,Σ), then

P ∨Q := {I \ J, I ∩ J, J \ I : I ∈ P, J ∈ Q} ∈ Π(A,Σ), P ∨Q � P and P ∨Q � Q. Thus the relation
� has the upper bound property on Π(A,Σ). We then infer that the set Π(A,Σ) is directed by the
binary relation �.

Let f : Ω → V , where V will denote either a real or a complex normed vector space. Given a
Σ-subpartition P = {(Ii, ti) : i ∈ {1, . . . , n}} ∈ Π(A,Σ), we define the (Σ, µ)-Riemann sum of f at
P to be the vector fµ(P ) =

∑n
i=1 µ(Ii)f(ti). Thus the function P 7→ fµ(P ) is a V -valued net defined

on the directed set (Π(A,Σ),�). We thereby say that

Definition 2.1. A function f : Ω → V is (Σ, µ)-integrable over a set A ∈ Σ, with (Σ, µ)-integral∫
A
fdµ if for every ε > 0, there exists P0 ∈ Π(A,Σ), such that for every P ∈ Π(A,Σ), P � P0 we

have ∥∥∥∥∫
A

fdµ− fµ(P )

∥∥∥∥ < ε. (2.1)
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We shall denote by I(A, V,Σ, µ) the set of all (Σ, µ)-integrable functions over the set A.
It should also be noticed that if the set A is such that µ(A) = 0, then for all subpartitions P ∈

Π(A), fµ(P ) = 0, and thus
∫
A
fdµ = 0. It follows that∫

A

fdµ =

∫
A

gdµ whenever µ{x ∈ A : f(x) 6= g(x)} = 0.

We write f
µ∼ g, if µ{x ∈ A : f(x) 6= g(x)} = 0. It is readily seen that the relation f

µ∼ g is
an equivalence relation on I(A, V,Σ, µ). We shall then denote by I(A, V,Σ, µ) the quotient space
I(A, V,Σ, µ)/

µ∼ . For 1 ≤ p < ∞, we shall denote by Ip(Ω, V,Σ, µ) the subspace of I(Ω, V,Σ, µ)
consisting of functions f such that the function s 7→ ‖f(s)‖pV is µ-integrable. The space Ip(Ω, V,Σ, µ)

shall be normed by f 7→ ‖f‖p = (
∫

Ω
‖g‖pV dµ)

1
p . The space I∞(Ω, V,Σ, µ) is defined by

I∞(Ω, V,Σ, µ) =
{
f ∈ F(Ω, V ) : µ-esssup‖f‖V <∞

}
where F(Ω, V ) denotes the set of all V -valued function defined on Ω. The space I∞(Ω, V,Σ, µ) will
be normed by f 7→ ‖f‖∞ = µ− esssup ‖f‖V .

Remark 2.1. We notice that:

• the spaces
(
Ip(Ω, V,Σ, µ), ‖·‖p

)
, 1 ≤ p <∞, and

(
I∞(Ω, V,Σ, µ), ‖·‖∞

)
are all Banach

spaces whenever V is a Banach space.

• if µ is the Lebesgue measure, then the Lebesgue function space Lp(Ω, V ) is contained in
Ip(Ω, V, (Σ, µ)).

• a continuous version of the Dvorestski-Rogers theorem proved in [9, Theorem 16] shows that

I1(Ω, V, (Σ, µ))  I(Ω, V, (Σ, µ)).

• in the above definition of the integrability, no notion of measurability is required.

• the Hölder’s inequality has the following generalization: if p1, p2, . . . , pn, r ∈ [1,∞) satisfy

1

p1
+

1

p2
+ · · ·+ 1

pn
=

1

r

then for every fi ∈ Ipi(Ω,R,Σ, µ), i ∈ {1, 2, . . . , n}, we have[∫
Ω

|f1f2 · · · fn|r dµ
] 1

r

≤
n∏
i=1

[∫
Ω

|fi|pi dµ
] 1

pi

.

For more detailed exposition and further results on the notion of extended integral see [10].

3 An Extension of the Besicovitch Covering Lemma

In what follows, (Ω, τ) is a topological vector space and Σ ⊃ τ, and µ : Σ ⊂ 2Ω → [0,∞] is a
translation invariant size function, that is,

∀A ∈ Σ, ∀ω ∈ Ω, µ(ω +A) = µ(A).

It is a well-known fact that a topological vector space has a local base consisting of balanced sets.
We shall denote by N bal

x the collection of all balanced neighborhoods of x ∈ Ω.
We introduce the notion of µ-balls that will take on the role played by metric balls in the standard

Besicovitch covering theorem.
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Definition 3.1. Let 0 be the zero vector in Ω. We shall call a µ-ball of size r centered at 0, the set
of the form

N(0, r) =
⋂{

N ∈ N bal
0 , N is open, µ(N) > r

}
.

For an arbitrary element ω ∈ Ω, a µ-ball of size r centered at ω is defined to be the set

N(ω, r) := ω +N(0, r).

Clearly, N(ω, r) is balanced, and if r < r′, then N(ω, r) ⊂ N(ω, r′). By translation invariance, we
have µ(N(ω, r)) = µ(N(0, r)). More generally, given a subset A of Ω, a set of the form

N(A, r) := A+N(0, r)

is called a µ-neighborhood of the set A. We say that a subset A ∈ 2Ω is µ-bounded if there exists
r > 0 such that A ⊂ N(0, r).

Definition 3.2. We say that the size function µ satisfies the uniform doubling condition if there
exists k > 0 such that for every ω ∈ Ω and for every r > 0, we have

µ(N(ω, r) +N(0, r)) = kµ(N(0, r)). (3.1)

It is easily verified that the Carathéodory extension of the Lebesgue measure is an example of
size function that satisfies the uniform doubling condition. In what follows we shall always assume
that µ satisfies the uniform doubling condition.

We need some technical lemmas.

Lemma 3.1. Assume that the size function µ satisfies the uniform doubling condition. Then there
exists an integer K0 such that if ω, ω1, . . . , ωK0 ∈ Ω with the properties that N(ω, 1) ∩ Ni(ωi, 1) 6= ∅
for each i, then some Ni(ωi, 1) contains ωj for some i 6= j.

Proof. Let ω1, . . . , ωm ∈ Ω be such that N(ω, 1) ∩ N(ωi, 1) 6= ∅ for each i ∈ {1, . . . ,m} , and no ωi
belongs to N(ωj , 1) for i 6= j. Then we notice that N(ωi, 1)⊂ N(ω, 1) + N(0, 1) for each i. Indeed, if
x ∈ N(ωi, 1), then x − ω0 ∈ N(0, 1) where ω0 ∈ N(ω, 1) ∩ N(ωi, 1). On the other hand, ω0 − ω ∈
N(0, 1), and so

x− ω = (x− ω0) + (ω0 − ω) ∈ N(0, 1) +N(0, 1)

which implies that
x ∈ ω +N(0, 1) +N(0, 1) = N(ω, 1) +N(0, 1).

It then follows that
m⋃
i=1

N(ωi, 1) ⊂ N(ω, 1) +N(0, 1).

We next claim that N(ωi,
1
2k

) are disjoint µ-balls, that are obviously contained in
⋃m
i=1 N(ωi, 1).

Indeed, if N(ωi,
1
2k

) ∩N(ωj ,
1
2k

) 6= ∅, then

N(ωi,
1

2k
) ∪N(ωj ,

1

2k
) ⊂ N(ωi,

1

2k
) +N(0,

1

2k
) (3.2)

It follows from (3.1) that

N(ωi,
1

2k
) +N(0,

1

2k
) ⊂ N(ωi,

1

2
) ⊂ N(ωi, 1). (3.3)

Combining (3.2) and (3.3) would imply that ωj ∈ N(ωi, 1). This contradiction proves our claim.
It then follows again from (3.1) that
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m

2k
=

m∑
i=1

µ (N(ωi, 1/2k)) = µ

(
m⋃
i=1

N(ωi, 1/2k)

)

≤ µ

(
m⋃
i=1

N(ωi, 1)

)
≤ µ (N(ω, 1) +N(0, 1))

= kµ(N(0, 1)) = k.

Hence m ≤ 2k2. The proof is complete.

With a few obvious technical changes, the following variant of the above lemma can safely be
established.

Lemma 3.2. There exists an integer K1 such that if ω, ω1, . . . , ωK1 ∈ Ω with the properties that
N(ω, r) ∩ N(ωi, ri) 6= ∅ for each i, where ri ≥ 2

3
r > 0, then some Ni(ωi, ri) contains ωj for some

i 6= j.

We now state and prove our first extension of the Besicovitch covering lemma. The proof follows
the same transcendental induction argument as in the proof of the corresponding standard metric
case (see e.g. [11]). One simply replaces closed balls with µ-balls.

Theorem 3.3. Let F be a collection of µ-balls of size at most R, for some R > 0. Let C be the set of
the centers of the µ-balls in F . Then there exists an integer K > 0, such that for each 1 ≤ k < K,
there exists a countable collection Ck ⊂ F such that

C ⊂
K⋃
k=1

⋃
N∈Ck

N.

Proof. LetR0 := sup {µ(N) :N ∈ F} . PickN(ω, r) ∈ F such that r ≥ 9
10
R0.We consider the integer

K1 given by Lemma 3.2. Define

F1 = {N(ω, r)} ,F2 = F3 = . . . = FK = ∅

where K = K1 + 1. We let T = {N(ω′, r) ∈ F : ω′ ∈ N(ω, r)} and R = F \ T ∪ F1 ∪ · · · ∪ FK . Let
H be the collection of partitions of F of the form {F1, · · · ,FK , T ,R} with the following properties:

1. Each Fj consists of disjoint µ-balls (from F).

2. If N(ω, r) ∈ Fj , and if N(ω′, r′) ∈ F is such that ω′ ∈ N(ω, 9
10
r), then N(ω′, r′) ∈ T .

3. If N(ω, r) ∈ Fj , and N(ω′, r′) ∈ R, then r ≥ 9
10
r′.

4. If N(ω, r) ∈ T , then some N(ω′, r′) ∈ F∞ ∪ · · · ∪ FK.
The step above shows that H 6= ∅.
We partially order H as follows

{F1, · · · ,FK , T ,R} ≺
{
F ′1, · · · ,F ′K , T ′,R′

}
⇐⇒

Fi ⊂ F ′i , ∀i, T ⊂ T ′, R ⊃ R′.

We are done if we show that there exists {F1, · · · ,FK , T ,R} ∈ H such that R = ∅.
Let {Fα1 , · · · ,FαK , T α,Rα}α∈A be a totally ordered family in H. Then clearly,{ ⋃

α∈A

Fα1 , · · · ,
⋃
α∈A

FαK ,
⋃
α∈A

T α,
⋂
α∈A

Rα
}
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is an upper bound. Hence by the Zorn’s Lemma, H has a maximal element, say

M = {F1, · · · ,FK , T ,R} .

We shall show that R = ∅. Assume that R 6= ∅. Let R1 := sup {µ(N) :N ∈ R} . Pick N(ω, r) ∈ R
such that r ≥ 9

10
R1. Then N(ω, r) is disjoint from all the balls of at least one of the Fi, because

otherwise we would have a contradiction with Lemma 3.2. Let k1 be the smallest element in {1, . . . ,K}
with such a disjointness property. Consider

M∗ := {F1, · · · ,Fk1 ∪ {N(ω, r)},Fk1+1, . . . , T ∗,R∗}

where T ∗are those balls in R whose centers are in N(ω, r), and R∗denotes the reminder. Then
M∗ ∈ H andM≺M∗. This contradicts the maximality ofM, and hence finishes our proof.

We now introduce the definition of a non-metric Besicovitch covering.

Definition 3.3. Let F be a collection of non trivial µ-balls in Ω. We say that F is a µ-fine Besicovitch
covering for a set A ∈ 2Ω if for every a ∈ A and every ε > 0, there exists a µ-ball N(a, r) ∈ F such
that r < ε.

Our next result generalizes the Besicovitch measure-theoretical covering Lemma.

Theorem 3.4. Let A ⊂ Ω, µ(A) < ∞, and let F be a µ-fine Besicovitch covering of A. Then there
exists a countable subcollection C of F , consisting of disjoint µ-balls such that

µ(A \
⋃
N∈C

N) = 0. (3.4)

Proof. We assume that µ(A) > 0, otherwise the statement is trivial. Since µ(A) < ∞, we also can
assume without loss of generality that the µ-balls elements of F are all of size at most 1. Then by
Lemma 3.3, there exists an integer K > 0, such that for each 1 ≤ k < K, there exists a countable
collection Ck ⊂ F such that A ⊂

⋃K
k=1

⋃
N∈Ck

N. Hence there exist k ∈ {1, . . . ,K}, and disjoint
µ-balls in F centered at ω1, . . . , ωL1 ∈ Ω such that

µ(A ∩
L1⋃
i=1

N(ωi, ri)) ≥
µ(A)

K + 1
.

It follows that

µ(A \
L1⋃
i=1

N(ωi, ri)) ≤ (1− 1

K + 1
)µ(A).

Next, we let A2 = A \
⋃L1
i=1 Ni. If µ(A2) = 0, the process terminates and the theorem is proven.

Otherwise we let

F2 = {N ∈ F : center of N in A2, N ∩N(ωi, ri) = ∅, i = 1, . . . , L1}

and we then apply the same argument as above to the pair (A2,F2) to obtain disjoints µ-balls
centered at ωL1+1, . . . , ωL2 ∈ Ω such that

µ(A \
L2⋃
i=1

N(ωi, ri)) ≤ (1− 1

K + 1
)2µ(A).

Repeating the processm times, we will obtain a collection of Lm µ-balls centered at ωLm−1+1, . . . , ωLm ∈
Ω such that

µ(A \
m⋃
i=1

N(ωi, ri)) ≤ (1− 1

K + 1
)mµ(A). (3.5)
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If for some m ∈ N,

µ(A \
m⋃
i=1

N(ωi, ri)) = 0

the process terminates and the theorem is proven. Otherwise, (3.5) holds for all m ∈ N. Letting
m→∞, the claim follows.

4 Maximal Function
In this section we extend the Lebesgue-Differentiation Theorem to the setting of functions in the space
I1(Ω, X, µ) where Ω is a topological vector space, X is a normed vector space and µ is a translation
invariant size function that satisfies the uniform doubling condition.

Definition 4.1. Let f ∈ I1(Ω, X, µ). We define the Hardy-Littlewood Maximal Function Mµf by

Mµf(x) = sup
r>0

1

µ(N(x, r))

∫
N(x,r)

‖f(ω)‖ dµ(ω).

Further, and more generally, if ν : Σ → X is an additive vector measure of bounded variation, then
we define

Mµν(x) = sup
r>0

‖ν(N(x, r))‖
µ(N(x, r))

.

Recall that the variation of an additive vector measure ν : Σ→ X is defined to be

‖ν‖1 = sup
π

∑
A∈π

‖ν(A)‖

where the supremum is taken over all Σ-partitions π of Ω.
The principal result about maximal function is the following:

Proposition 4.1. Let µ be a translation invariant size function that satisfies the uniform doubling
condition. If ν : Σ→ X is an additive vector measure and α > 0, then

µ ({x ∈ Ω : Mµν(x) > α}) ≤ 1

α
‖ν‖1 . (4.1)

Here and hereforth {Mµν > α} is a short for {x ∈ Ω : Mµνf(x) > α} .

Proof. Let A = {Mµν > α}, and let F consist of all µ-balls N(x, rx) of size at most rx ≤ 1, centered
at points x of A such that

‖ν(N(x, r))‖
µ(N(x, r))

> α.

IfA = ∅, there is nothing to prove. IfA 6= ∅, the hypotheses of Theorem 3.4 are satisfied, and it follows
that there exists a family of disjoint µ-balls {N(xi, ri) ∈ F : i ∈ N} such that µ(A\

⋃∞
i=1 N(xi, ri)) = 0.

Hence

µ(A) ≤
∞∑
i=1

µ(Ni) ≤
1

α

∞∑
i=1

‖ν(N(x, r))‖ ≤ 1

α
‖ν‖1 .

The proof is complete.

Since every f ∈ I1(Ω, X, µ) naturally defines an additive set function of bounded variation given
by

A 7→ ν(A) =

∫
A

fdµ,

the following result is a particular case of the above proposition.
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Proposition 4.2. Let µ be a translation invariant size function that satisfies the uniform doubling
condition. If f ∈ I1(Ω, X, µ) and α > 0, then

µ ({x ∈ Ω : Mµf(x) > α}) ≤ 1

α
‖f‖1 . (4.2)

We now prove the Lebesgue-Differentiation Theorem.

Theorem 4.1. Let Ω be a locally compact topological vector space. Let µ : Σ ⊂ 2Ω → [0,∞] is a
finitely additive size function. If f ∈ I1(Ω, X, µ), then

lim
r→0

1

µ(N(0, r))

∫
N(0,r)

fdµ = f(x), µ-a.e.

Proof. By local compactness of Ω, it is quickly seen that f ∈ I1(Ω, X, µ) if and only if 1Kf ∈
I1(Ω, X, µ) for every K compact subset of Ω. We then may assume without loss of generality that
Ω is compact. Given ε > 0, let g be continuous on Ω such that ‖f − g‖1 < ε. Since we have for every
x ∈ Ω,

lim
r→0

1

µ(N(0, r))

∫
N(0,r)

gdµ = g(x)

we have for every α > 0,

Eα :=

{
x ∈ Ω : lim sup

r→0

∥∥∥∥∥ 1

µ(N(0, r)

∫
N(0,r)

fdµ− f(x)

∥∥∥∥∥ > α

}

=

{
x ∈ Ω : lim sup

r→0

∥∥∥∥∥ 1

µ(N(0, r))

∫
N(0,r)

(f − g)dµ− (f − g)(x)

∥∥∥∥∥ > α

}
.

We are done if we show that µ(Eα) = 0. We notice that

lim sup
r→0

∥∥∥∥∥ 1

µ(N(0, r))

∫
N(0,r)

(f − g)dµ− (f − g)(x)

∥∥∥∥∥ < Mµ(f − g) + ‖f − g‖ .

It follows that

Eα ⊂
{
x ∈ Ω : Mµ(f − g) >

α

2

}
∪
{
x ∈ Ω : ‖f(x)− g(x)‖ > α

2

}
.

By Proposition 4.1 and the Tchebytchev’s inequality, it follows that

µ(Eα) ≤ 4

α
‖f − g‖1 <

4ε

α

for all ε > 0. Hence µ(Eα) = 0. The proof is complete.

5 Conclusion
We have given a treatment of the Lebesgue-Differentiation Theorem in the setting of the integration
theory of vector valued functions. The treatment leans heavily of the machinery developped in the
first half of the paper which provides a non-metric version of the Besicovitch covering lemma. The
author believes that the interest in such generalizations lies not only in the fact that we have more
general results, but also in the light they shed on the classical situation.
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