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Abstract 

We introduce a natural and more flexible approach to the definition of 
vector valued integral that will completely forgo any measurability 
assumption, strengthen the existing various classical concepts of 
integral, and provide a continuous thread tying the subject matter 
together. As applications, we obtain extensions of the Lebesgue 
convergence theorems, the Dvoretsky-Rogers theorem, and the Orlicz-
Pettis theorem. 

1. Introduction 

Thanks to its close parallelisms with the numerical Lebesgue integral, the 
Bochner integral continues to be the reference whenever it comes to vector 
integration (see, for example, [3]) and proves to be still a very powerful tool 
in many mathematical applications. However, its definition is not simple due 
to the requirement of measure theory. On the other hand, the extension to 
vector integration of the Henstock-Kurzweil gauge integral technique, which 
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has been of interest to several authors [4, 8, 7, 12], since Henstock [9] 
launched the idea in 1969, seems to offer a simpler and more transparent 
alternative. However, its definition is for the most part limited to compact 
subsets of metric spaces. In an attempt to remedy the limitation of the 
Henstock-Kurzweil integral, and at the same time aiming to unify the two 
approaches, we have proposed in [11] a construction that allows us to define 
vector valued Henstock-Kurzweil integration on any abstract measure space. 

However, the assumption of measurability is arguably still too heavy and 
rather restrictive in some cases in many important applications, especially 
when the range space is not separable. For instance, the function tt δ6  that 

associates to every [ ],, bat ∈  the Dirac measure tδ  in the space [ ]∗baC ,  of 

Radon measures on [ ]ba,  is known to be non-measurable, however, 

tt δ6  is measurable and [ ]∫ ∞<δ
ba t dt

,
.  Other examples of non-

measurable operator-valued functions tUt 6  are also given in [12] for 

which ∫ ∞< .dtUt  

The purpose of the present paper is to provide an intuitive approach to 
integration that will do without any measurability assumption. We closely 
follow the same construction as in [11]. The only major difference is that we 
replace “measure” with a more general notion of “size function”. We use net 
limit which is a generalization of the notion of sequential limit (see, for 
example, [10]) introduced by Moore and Smith, and which is undoubtedly 
the most adapted approximation technique for the definition of the integral. 
We obtain a relatively simple definition of the integral that not only extends 
but also unifies the existing various notions of integral. This treatment allows 
us to bypass the seemingly unavoidable notion of measure theory of the 
Lebesgue-Bochner integral. 

We present our definition and some immediate basic properties of the 
integral in Section 2. Section 3 is devoted to the study of different classes of 
integrable functions. We study the vector valued extension of the Lebesgue 
integral. We obtain generalizations of the Lebesgue convergence theorems. 
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In Section 4, we discuss further notions of integrability; we obtain results 
concerning unconditional, norm and weak integrability of functions, 
extending the Dvoretsky-Rogers theorem and the Orlicz-Pettis theorem. 

2. Definition of the Integral 

In this section, we lay out the essential elements for the definition of the 
integral. For the range space, we always consider a linear vector space X 
equipped with a norm .⋅  An approximation technique must be at hand in 

order to define any suitable integral. 

A nonempty set D is said to be directed by a binary relation ,;  if ;  has 
the following properties: 

(1) if Dzyx ∈,,  such that yx ;  and ,zy ;  then zx ;  (transitivity); 

(2) if ,, Dyx ∈  then there exists Dz ∈  such that xz ;  and yz ;  (upper 

bound property). 

Given a set X, a net of elements of X is an X-valued function defined on a 
directed set ( )., ;D  The notion of convergence can be defined whenever the 

set X is a metric space, with distance function d. 

A net ( ) ( )dXDf ,,: →;  is said to be convergent if there exists an 

element Xx ∈  such that for every ,0>ε  there exists D∈ω0  such that for 

every ,0ωω ;  ( )( ) ., ε<ω xfd  

Ordinary sequences ,nan 6  in which N=D  directed by >, constitute 

a special case of net. The net limit takes over all the essential parts of the 
theory of limits of sequences; to name a few: the uniqueness of limit, the 
algebraic properties of limits, the Cauchy criterion, and so on. For more 
details on net limits, we refer the reader to [10]. 

The next essential element for the definition of the integral is the “sizing” 
of the subsets of the domain space. In the following, Ω  is a nonempty set, 

the power set of ,Ω  that is, the set of all subsets of Ω  is denoted by .2Ω  
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By a size function, we mean a set function [ ]∞+→Ω ,02:A  that 

satisfies the following conditions: 

• ( ) ;0=∅A  

• ( ) ( )BA AA ≤  whenever ;BA ⊂  (monotonicity); 

• ( )∑
∈∈

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

NN n
n

n
n AA AA ∪  (countable subadditivity). 

The Carathéodory extensions of measures provide us with ample examples of 
such size functions. 

If ,2Ω∈A  then we call subpartition of A any collection =P  

{ }nIII ...,,, 21  of finitely many pairwise disjoint subsets of A of finite size; 

that is, ∅=ji II ∩  whenever ji ≠  and ( ) ∞<iIA  for all { }....,,1 ni ∈  

We denote P�  the subset of A obtained by taking the union of all elements 
of P. A partition { }niIP i ...,,1: ==  is said to be tagged if a point ii It ∈  

is chosen for each { }....,,1 ni ∈  We write ( ) { }{ }nitIP ii ...,,1:,: ∈=  if we 

wish to specify the tagging points. We denote by ( )AΠ  the collection of all 

tagged subpartitions of the set A. The mesh or the norm of ( )AP Π∈  is 

defined to be 

( ){ }.:max PIIP ii ∈= A  

If ( ),, AQP Π∈  then we say that Q is a refinement of P and we write 

PQ ;  if PQ ≤  and .QP �� ⊂  Clearly, such a relation does not 

depend on the tagging. It is readily seen that the relation ;  is transitive on 
( ).AΠ  If ( ),, AQP Π∈  then we denote by 

{ }.,:\,,\: QJPIIJJIJIQP ∈∈=∨ ∩  

It is readily seen that ( )AQP Π∈∨  and that PQP ;∨  and .QQP ;∨  

Thus, the relation ;  has the upper bound property on ( ).AΠ  We infer that 

the set ( )AΠ  is directed by the binary relation .;  
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Given a function ,: Xf →Ω  and a tagged partition {( ) ∈= itIP ii :,:  

{ }} ( ),...,,1 An Π∈  we define the Riemann sum to be 

( ) ( ) ( )∑
=

=
n

i
iif tfIP

1
.AA  

Thus, the function ( )PP fA6  is an X-valued net on the directed set ( ).AΠ  

For convenience, we are going to denote ( )∫ =
A f Pfd AA

;
lim:  whether or not 

the net limit exists. 

We now hold all the necessary tools to define the notion of integrability. 

Definition 1. We say that a function Xf →Ω:  is (strongly) integrable 

over a set Ω⊂A  with respect to a given size function A  (or A -integrable 

for short) if ∫ A
fdA  represents a vector in X. The vector ∫ A

fdA  is then called 

the A -integral of f over the set A. 

In other words, Xf →Ω:  is A -integrable over the set A with A -integral 

∫ A
fdA  if for every ,0>ε  there exists ( )AP Π∈0  such that for every ∈P  

( ) ,, 0PPA ;Π  we have 

 ( ) .ε<− ∫Af fdP AA  (2.1) 

We shall denote by ( )XA ,, AI  the set of all A -integrable functions over 

the set A. 

It now becomes transparent that indeed our approach does not require 
any knowledge of measure theory. It also has the advantage that many 
classical properties of the integral follow immediately from the properties of 
net limits and therefore their proofs are obtained at no cost at all. 

For example, the uniqueness of net limits ensures us that there exists at 

most one vector ∫ A
fdA  that satisfies the property in Definition 1. We also 
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immediately infer that being a limit operator, the integral is linear, and that 
( )XA ,, AI  is indeed a vector space. 

It is clear that if A and B are disjoint subsets of Ω, then every subpartition 
R of BA�  is of the form ,QP�  where ( )AP Π∈  and ( ).BQ Π∈  It then 

follows that ( ) ( ) ( ).QPR fff AAA +=  Thus, 

Proposition 2. If a function Xf →Ω:  is A -integrable over both a set 

A and a set B, then f is A -integrable over BA�  and 

∫ ∫ ∫+=
BA A B

fdfdfd
�

.AAA  

Now assume that the range space X has a lattice structure compatible 
with its norm. The following is known as the monotonicity property of the 
integral. 

Proposition 3. Let Xgf →Ω:,  be both A -integrable over A, and 

Xh →Ω:  such that ( ) ( ) ( ),ω≤ω≤ω ghf  for all ,A∈ω  then 

(1) h is A -integrable, and 

(2) ∫ ∫ ∫≤≤
A A A

gdhdfd .AAA  

Proof. It suffices to notice that for all ( ),AP Π∈  one has ( ) ≤PfA  

( ) ( ).PP gh AA ≤  ~ 

It is a well known fact that, if X is a complete space, then a net of 
element if X is convergent if and only if it satisfies the Cauchy criterion (see, 
for example, [10]). It follows that 

Proposition 4. Let X be a Banach space. Then a function Xf →Ω:  is 

A -integrable if and only if for every ,0>ε  there exists ( )AP Π∈0  such that 

for every ( ) ,,,, 0PQPAQP ;Π∈  we have 

 ( ) ( ) .ε<− QP ff AA  (2.2) 
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We next see how Definition 1 provides an alternative generalization that 
permits integration over any arbitrary subset of .Ω  It also broadens the class 
of integrable functions 1 large enough to contain most of the classical notions 
of integral. 

Let ( )niI 1=  be a finite partition of the interval [ ] ii Icba ∈,,  for each i, 

and let δ be a positive function on [ ]., ba  The collection of pairs ( )niii cI 1, =  

is said to be δ-fine if for each ( ) ( )( ).,, iiiiii ccccIci δ+δ−⊂∈  A function 

[ ] Xbaf →,:  is said to be Henstock-Kurzweil integrable on [ ]ba,  if there 

exists an element [ ]∫ ∈
HK

ba
Xf

,
 with the property: for ,0>ε  there is a 

function [ ] [ )∞→δ ,0,: ba  such that the inequality 

( ) ( )
[ ]

ε<−∑ ∫
=

n

i

HK

baii fdIcf
1

,
AA  

holds for every δ-fine partition ( ) ., 1
n
iii cI =  Here ( ) iii abI −=A  is the natural 

length of the interval .iI  Let K be the subset of R2  consisting of compact 

intervals. For each subset of A of ,R  if there exists { } KIn ⊂  such that 

,nn IA ∪⊂  then we define 

( ) ( ) ,,:inf
1 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⊂= ∑
∞

=

∗

n n
nnn KIIAIA ∪AA  

otherwise, we let ( ) .∞=∗ AA  It is readily seen that ∗A  is a size function. We 

notice that δ-fine partitions are elements of [ ]( ),, baΠ  and any refinement of 

a δ-fine partition is a δ-fine partition, and 

( ) ( ) ( )∑
=

∗=
n

i
fii PIcf

1
,AA  

where ( ){ }....,,1:, nicIP ii ==  We infer that Henstock-Kurzweil integrable 
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functions are ∗A -integrable in the sense of our Definition 1, and the integrals 
do coincide. The book of Bartle [1] is a good source on scalar-valued 
Henstock-Kurzweil integral. For the vector valued case, the reader is referred 
to [4, 6]. 

Small changes can be made to extend the Henstock-Kurzweil integral to 
any arbitrary subset of a set Ω on which a size function A  is defined. We first 
extend the notion of δ-fine as partition follows: 

Given a positive function δ on ,Ω  we say that a subpartition =:P  

( ) { }{ } ( )AnitI ii Π∈∈ ...,,1:,  is A -δ-fine if for ,...,,1 ni =  

( ) ( ).2 ii tI δ≤A  

Definition 5. A function Xf →Ω:  is said to be (generalized) 

Henstock-Kurzweil A -integrable over a set ,Ω⊂A  if there exists an 

element ∫ ∈
HK
A

Xf  such that for 0>ε  there is a function [ )∞→Ωδ ,0:  

such that the inequality 

( ) ε<− ∫
HK

Af fdP AA  

holds for every A -δ-fine subpartition ( ).AP Π∈  We denote by ( )XA ,, AHK  

the set of all the generalized Henstock-Kurzweil A -integrable functions over 
the set A. 

It follows from our discussion above that 

Proposition 6. ( ) ( )XAXA ,,,, AA IHK ⊂  and ∫ ∫=
HK
A A

fdfd AA  for 

every ( ).,, XAf AHK∈  

Now, let ( )μΣΩ ,,  be a measure space, that is to say, Σ  is a σ-algebra, μ 

is a measure defined on .Σ  The elements of Σ  are called measurable sets. If 
A is a measurable set, then we denote by AΣ  the subsets of Σ  consisting of 

measurable subsets of A. A subpartition ( )AP Π∈  is said to be measurable 
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if the elements of P are taken from .AΣ  We denote by ( )μΠ ,A  the subset of 

( )AΠ  consisting of measurable subpartitions of A. ( )μΠ ,A  is clearly seen to 

be stable under refinement. The outer-measure ∗μ  associated to the measure 

μ, that is, the Carathéodory extension of μ is clearly a size function on .2n  
Given a σ-algebra Σ′  of subsets of ,Ω  a function R→Ω:f  is Σ′ -measurable 

if ( ) Σ′∈− Uf 1  whenever U is an open subset of .R  Since the restriction of 
∗μ  to Σ  coincides with μ, it follows that check that a measurable function is 

Lebesgue integrable with respect to a measure μ if and only if both f and f  

are ∗μ -integrable in the sense of Definition 1 and the integrals do coincide. 

A classical reference for details on Lebesgue integral is the book of Bartle 
and Sherbert [2]. 

The vector valued extension of the Lebesgue integral will be treated in 
the next section. 

3. Space of Integrable Functions 

In what follows, X is a vector space with norm .⋅  We have already 

noticed that the space ( )XA ,, AI  has a vector space structure. In this 

section, we briefly show that if X is a Banach space and ( ) ,∞<AA  then 

( )XA ,, AI  can be given the structure of a complete seminormed space. We 

also introduce and study the notion of norm-integrability. We obtain 
generalizations of the convergence theorems of the Lebesgue integral. 

Definition 7. For every ( ),,, XAf AI∈  we define the ( )AΠ -variation 

of f to be 

( ) { ( ) ( )}.:sup: APPf fA Π∈=Π A  

We say that the function f is of bounded ( )AΠ -variation if ( ) .∞<Π Af  

The collection of all functions of bounded ( )AΠ -variation will be denoted 

by ( ).,, XA AΠ  
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It is clear that ( ) ( ).,,,, XAXA AA Π⊂I  It is readily seen that 6f  

( )Af Π  defines a seminorm on ( ).,, XA AΠ  For the particular case where 

( )AA  is finite, we have the following theorem, the proof of which goes 

exactly in the same way as in the proof of Theorem 3 of [11]. 

Theorem 8. Let [ ]∞→Ω ,02:A  be a size function, Ω∈ 2A  be such that 

( ) ,∞<AA  and let X be a Banach space. Then the function space ( )XA ,, AI  

is complete with respect to the seminorm ( ).AΠ⋅  

It should be also clear that if the set A is such that ( ) ,0=AA  then for all 

subpartitions ( ),AP Π∈  ( ) ,0=PfA  and thus ∫ =
A

fd .0A  It follows that the 

integral does not distinguish between functions which differ only on set of 
size zero. To make this more precise, 

∫ ∫=A A
gdfd AA  whenever ( ) ( ){ } .0: =≠∈ xgxfAxA  

We say that a function f is essentially equal on A to another function g, and 
we write gf ~  if ( ) ( ){ } .0: =≠∈ xgxfAxA  It is readily seen that the 

relation gf ~  is an equivalence relation on ( ).,, XA AI  We shall denote by 

( )XAI ,, A  the quotient space ( ) .~,, XA AI  The restriction of the seminorm 

( )AΠ⋅  is a norm on ( ).,, XAI A  As a corollary of Theorem 8, we get 

Theorem 9. Let [ ]∞→Ω ,02:A  be a size function, Ω∈ 2A  be such 

that ( ) ,∞<AA  and let X be a Banach space. Then ( )XAI ,, A  is Banach 

space with respect to the norm ( ).AΠ⋅  

Definition 10. We say that a function Xf →Ω:  is norm-integrable 

over a set Ω⊂A  with respect to a given size function A  if the numerical 
function 

( ) [ ) ( )ωω∞→Ω⋅ ff 6:,0:  

is A -integrable over the set A. We denote by ( )XA ,, AI  the space of all 

norm-integrable functions over the set A. 
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We observe that ( )∫ ⋅⋅
A

dff A6:1  defines a seminorm on 

( ),,, XA AI  and it is easily checked that if X is a Banach space 

( )XA ,, AI  is complete when endowed with the seminorm .1⋅  Hence, 

the space ( ) ( ) ~,,,, XAXAI AA I=  is a Banach space with the norm 

.1⋅  

One of the main reasons behind the Lebesgue-Bochner integral’s power 
and popularity is the convergence theorems that apply to it. We shall see next 
that our extension of the definition of integral yields a space that already 
possesses those remarkable properties. 

Fatou’s Lemma. 

Theorem 11. Let Xfn →Ω:  be a sequence of functions satisfying for 

every ( ) ( ) .inflim:, ω=ω∈ω ∞→ nn ffA  Then 

( )∫ ∫ ⋅≤
∞→A A nn

dffd .inflim AA  

Proof. By the definition of the integral, it is enough to show that 

( ) ( )∫ ⋅≤
∞→ A nnf dfP AA inflim  

for all ( ){ } ( )....,,1:, AmitIP ii Π∈==  Fix ( ).AP Π∈  Define ( )ωϕP  

( ) ( )∑ ∈ ω= PI iIi
tf .1  We notice that ( ) ( ).PP fP AA =ϕ  We let =a  

( ){ },:min AP ∈ωωϕ  ( ){ },:max AM P ∈ωωϕ=  and we define 

( ){ }.: aAE P >ωϕ∈ω=  

We first assume that ( ) .∞=ϕ PPA  Then ( ) ( ).EMPP AA ≤ϕ  Hence 

( ) .∞=EA  Next, we define 

( ){ }.,: nkafAE kn ≥∀>ω∈ω=  

Then ,nn EE ∪⊂  and 1+⊂ nn EE  for all n. Thus, ( ) ,∞=nn E∪A  and 
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( ).11 += ≤⎟
⎠
⎞

⎜
⎝
⎛

n
n
k k EE AA ∪  It follows that ( ) .lim ∞=∞→ nn EA  On the other 

hand, we have ( ) ( )∫ ≥⋅
A nn Eadf .AA  It follows that 

( ) ( )∫ ⋅=∞=
∞→ A nnf dfP .inflim AA  

We now look at the case ( ) .∞<ϕ PPA  Then ( ) ( )PEa Pϕ≤ AA  and thus 

( ) .∞<EA  Fix 0>ε  and define 

( ) ( ) ( ){ }.,1: nkfAE Pkn ≥∀ωϕε−>ω∈ω=  

Then ,nn EE ∪⊂  and 1+⊂ nn EE  for all n. Since ( ) ,∞<EA  we have 

( ) ( ) .0\lim =∅=
∞→

AA nn
EE  

Thus, we can choose an integer 0n  such that ( ) ε<nEE \A  for all .0nn >  

Thus, if ,0nn >  then we have 

( ) ( ) ( ) ( )∫ ∫ ∫ ωϕε−≥⋅≥⋅
A E E Pnn

n n
ddfdf .1 AAA  

On the other hand, 

∫ ∫ ∫ ∫ ϕ+ϕ=ϕ=ϕ
A E E EE PPPP

n n
dddd

\
.AAAA  

Hence 

( ) ( ) ( )∫ ∫ ωϕε−≥⋅
A E Pn

n
ddf AA 1  

( ) ⎥⎦
⎤

⎢⎣
⎡ ϕ−ϕε−= ∫ ∫A EE PP

n
dd

\
1 AA  

( ) ⎥⎦
⎤

⎢⎣
⎡ ε−ϕε−≥ ∫A P MdA1  

∫ ∫ ⎥⎦
⎤

⎢⎣
⎡ ε+ϕε−ϕ=

A A PP Mdd .AA  
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Since 0>ε  is arbitrary, we get that 

( ) ( )∫ ∫ =ϕ≥⋅
∞→ A A fPnn

Pddf .inflim AAA  

The proof is complete. ~ 

Monotone Convergence Theorem. 

Theorem 12. Let Xfn →Ω:  be a sequence of functions satisfying: 

(1) ( ) ( ) ,0 1 ω≤ω≤ +nn ff  for every Ω⊂∈ω A  and for all ;N∈n  

(2) for every ( ) ( ).lim:, ω=ω∈ω ∞→ nn ffA  

Then [ ]∞→ ,0: Af  is A -norm-integrable if and only if 

( )∫ ∞<⋅∞→ A nn df .lim A  

Moreover, 

( ) ( )∫ ∫ ⋅=⋅
∞→A A nn

dfdf .lim AA  

Proof. It follows from the monotonicity property of the integral 
(Proposition 3) that 

( ) ( ) ( )∫ ∫ ∫ ⋅≤⋅≤⋅ +A A Ann dfdfdf .1 AAA  

Hence the sequence ( )∫ ⋅
A n dfn A6  is a non-decreasing sequence of real 

numbers. On the one hand, if f is integrable, that is, if ( )∫ ∞<⋅
A

df ,A  

then 

( ) ( )∫ ∫ ∞<⋅≤⋅
∞→ A An

dfdf .lim AA  

On the other hand, if ( )∫ ∞<⋅∞→ A nn df ,lim A  then by Fatou’s Lemma, 

we have 
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( ) ( ) ( )∫ ∫ ∫ ⋅=⋅≤⋅
∞→∞→A A A nnnn

dfdfdf .liminflim AAA  

In both the cases, we have ( ) ( )∫ ∫ ⋅=⋅
∞→ A An

n
dfdf .lim AA  ~ 

Dominated Convergence Theorem. 

Theorem 13. Let X be a lattice normed space. Let Xfn →Ω:  be a 

sequence of functions satisfying the following properties: 

(1) ( ) ( )ω→ω ffn  for all ;Ω⊂∈ω A  

(2) there exists a real valued function h A -integrable over the set A such 
that ( ) ( )ω≤ω hfn  for all ,A∈ω  and for all .N∈n  

Then 

(1) f is A -integrable; 

(2) ∫ =−
∞→ A n

n
dff ;0lim A  

(3) ∫ ∫∞→
=

A A n
n

dffd .lim AA  

Proof. It follows from the conditions of the theorem that for all ,A∈ω  
and for all ,N∈n  we have 

( ) ( ) ( )ω≤ω−ω hff n 2  

and ( ) ( ) 0suplim =ω−ω
∞→

n
n

ff  for each .A∈ω  Using linearity and 

monotonicity of the integral, we get that 

( ) ∫∫∫ ∫ −≤−=−
A nA nA A n dffdffdffd .AAAA  

By Fatou’s Lemma, we have 

∫ ∫ =−≤−
∞→∞→ A A n

n
n

n
dffdff .0suplimsuplim AA  

The result follows. ~ 
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As a direct consequence of the Dominated Convergence Theorem 13, we 
obtain that norm-integrable functions are integrable, i.e., ( ) ⊂XA ,, AI  

( ).,, XA AI  The reverse inclusion does not hold as evidenced by the classical 

example of the real valued function ( ) x
xxf sin=  defined on [ ).,0 ∞  

We note that if the size function ∗μ=A  is the Carathéodory extension of 

some measure μ defined on a σΣ -algebra of subsets of A, then norm-

integrability and Bochner-integrability agree for strongly μ-measurable 
functions. 

4. Further Notions of Integrability 

An analogue definition can also be introduced if we replace in Definition 

5 ( )AΠ  by ( ),~ AΠ  the set of all tagged partitions {( ) { }}nitIP ii ...,,1:,: ∈=  

for which each tagging it  is in P�  but is not required to be in iI  for each 

....,,1 ni =  

Definition 14. A function Xf →Ω:  is said to be unconditionally      

A -integrable over a set ,Ω⊂A  if there exists an element ∫ ∈
~
A

Xf  such 

that for 0>ε  there is a function [ )∞→Ωδ ,0:  such that the inequality 

( ) ε<− ∫
~

Af fdP AA  

holds for every A -δ-fine subpartition ( ).~ AP Π∈  We denote by ( )XA ,,~ AI  

the set of all unconditionally A -integrable functions over the set A. 

It becomes clear as in the above discussion that 

Proposition 15. ( ) ( )XAXA ,,,,~ AA II ⊂  and ∫ ∫=
~
A A

fdfd AA  for 

every ( ).,,~ XAf AI∈  
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We note that if the size function ∗μ=A  for some measure μ defined on a 

σ-algebra containing the Borel subsets of the set A, then Definition 14 is 
readily seen as an extension of the McShane integrability with respect to the 
measure μ. 

For finite dimensional Euclidean spaces X, it is easily checked that     

norm and unconditional A -integrability coincide, that is, ( ) =XA ,,~ AI  

( ).,, XA AI  The situation is different for infinite dimensional spaces. The 

well known Dvoretsky-Rogers Theorem (see, for example, [3]) asserts that in 
an infinite dimensional Banach space, there always exists an unconditional 
but not norm-summable sequence. Our next result can be seen as an 
extension of such a result. 

Theorem 16. Let X be an infinite dimensional Banach space. Let ∗μ=A  

for some regular measure μ defined on a σ-algebra containing the Borel 

subsets of .Ω  Let Ω∈ 2A  be compact. Then there exists a function Ω:f  

X→  which is unconditionally A -integrable but not norm- A -integrable over 
the set A. 

Proof. Since X is infinite dimensional, there exists a sequence { }nx  of 

elements of X that is unconditionally summable but not norm summable. Let 
{ }nU  be a pairwise disjoint sequence of open subsets of A. Then, since A  is 

σ-additive on Borel subsets of A, we have 

( ) ( )∑
∞

=
∞<≤

1
.

n
n AU AA  

By removing sets of size 0, we may assume that ( ) 0>nUA  for all n. Set 

( )[ ] nnn xUy 1−= A  for each .N∈n  Then, by our hypothesis, the series 

( )∑n nn yUA  is unconditionally convergent, say to x, while ( )∑n nn yUA  

.∞=  Define 

( )
⎩
⎨
⎧ ∈∈

=
.otherwise0

,,if NnUty
tf nn  
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Then ( ) ( )∫ ∑ ∞==⋅ n nn yUdf ,AA  that is, ( ).,, XAf AI∉  On 

the other hand, given ,0>ε  there exists a finite subset N⊂εN  such that 

 ( ) ε<−∑
ε≤ NKn

nn xyU
∪

A  (4.1) 

for every finite subset K of .N  By the Cauchy criterion, there exists ≥0N  

εNmax  such that for every finite subset N of { },...,,2,1\ 0NN  we have 

 ( ) .ε<∑
∈Nn

nn yUA  (4.2) 

Now let { }....,,1:0 ε== NnUP n  Then, clearly, ( ).0 AP Π∈  Then, for every 

{( ) } ( )AnjtJP Pjj Π∈== ~...,,2,1:,  such that 0PP ;  there exists a finite 

subset { }knnn ...,,, 21  of { }εN...,,2,1\N  such that 

( ) ( ) ( ) ( ) ( ) .
1 1
∑ ∑ ∑
= ≤ =

σ
ε

+=
P

jj

n

j Nn

k

j
nnnnii yJyUtfJ AAA  

It follows that 

( ) ( ) ( ) ( ) ( ) .
11
∑∑∑
=≤

σ
=

+−≤−
ε

k

j
nn

Nn
nn

n

j
ii jj

P
yJxyUxtfJ AAA  (4.3) 

Let ( ) ( ).
jj nnj UJc AA=  Then ( ].1,0∈jc  We get from (4.2) that 

( ) ( ) ( )∑∑∑
===

−+≤
k

j
nn

k

j
nn

k

j
nn jjjjjj

yJccyJcyJ
1

12
1

1
1

AAA  

( ) .1 ε<−++ − kk nnkk yJcc A"  (4.4) 

By combining (4.1), (4.3) and (4.4), we conclude that 

( ) ( ) .2
1

ε<−∑
=

Pn

j
ii xtfJA  

Thus, f is unconditionally A -integrable over the set A. ~ 
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As for strong integrals, there have been many definitions for weak 

integrals. In what follows, we shall denote by ∗X  the continuous dual of the 
normed space X. 

Definition 17. We say that a function Xf →Ω:  is 

(1) scalarly A -integrable over a set Ω⊂A  with respect to a given size 

function A  if for each ,∗∗ ∈ Xx  the numerical function 

[ ) ( )ωω∞→Ω ∗∗ fxfx 6:,0:  

is A -integrable over the set A. 

(2) absolutely scalarly A -integrable over a set Ω⊂A  with respect to a 

given size function A  if for each ,∗∗ ∈ Xx  the numerical function 

( ) [ ) ( )ωω∞→Ω⋅ ∗∗ fxfx 6:,0:  

is A -integrable over the set A. 

We denote by ( )XA ,, A∗I  (resp.  ( )),,, XA A∗I  the space of all 

scalarly (resp. absolutely scalarly) A -integrable functions over the set A. It 

follows from the Dominated Convergence Theorem 13 that ( )XA ,, A∗I  

( ).,, XA A∗⊂ I  

Theorem 18. If a function ( ),,, XAf A∗∈ I  then there exists a vector 

∫
∗∗ ∗∗∈

A
XfdA  such that for every ,∗∗ ∈ Xx  

∫∫ ∗∗∗∗ =
AA

fdxfdx ., AA  

Proof. We notice that for each ,∗∗ ∈ Xx  the map ∫ ∗
∗μ

BAx fdxB
∩

A6:  

for Ω∈ 2B  defines an element of ( ),ΩM  the Banach space of scalar measures 

(not necessarily non-negative) with the semi-variation norm. Consider the 
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operator ( )Ω→∗ MXT :  defined by .∗μ=∗
x

Tx  Then the adjoint ∗T  of T 

maps ( )∗ΩM  into .∗∗X  For each ,2Ω∈B  the indicator function B1  defines 

an element of ( )ΩM  as follows: ∫ μ=μ
BAB d

∩
1,  for every ( ).Ω∈μ M  

It follows in particular that ∗∗∗ ∈ XT A1  and we have for every ,∗∗ ∈ Xx  

∫ ∗∗∗∗ =μ== ∗
AAxAA fdxTxTx .1,1,1, A  

Hence, ∫
∗∗ ∗∗∗ ∈=

A A XTfd ,1A  as desired. ~ 

If ( ),,, XAf A∗∈ I  then we call the vector ∫
∗∗ ∗∗∈

A
XfdA  as the        

∗∗A -integral of f. We say that f is A -Pettis integrable if ∫
∗∗

∈
A

Xfd .A  

Note again that in any of the above definitions, A  is not necessarily a 
measure and no measurability assumptions are required. However, when 
strong measurability is assumed, then we have a quite interesting result. First, 
we say that a function Xf →Ω:  is A -essentially separably valued on a set 

A if there exists a separable subspace Y of X such that ( ){ }( )YfA ∉ω∈ω :A  

.0=  Then we have the following theorem which can be seen as an extension 
of the Orlicz-Pettis Theorem. 

Theorem 19. Let X be a Banach space, Xf →Ω:  be an A -essentially 

separably valued function. Assume that f is ( )AΣ -measurable, and let ∈A  

( )AΣ  be of finite size. Then f is A -Pettis-integrable over A if and only if f is 

A -integrable over A; in which case, 

∫ ∫
∗∗

=
A A

fdfd .AA  

Proof. The sufficiency is obvious. For the necessity, we notice that since 
f is A -essentially separably valued on A and ( )AΣ -measurable, f is the A -limit 



Mangatiana A. Robdera 138 

of ( )AΣ -simple functions, that is to say, f is measurable with respect to the 

measure restriction of A  to ( ).AΣ  The necessity then follows from Theorem 

14 of [11]. 

To establish the equality, we notice that since the integral is a limit 

operator and since each ∗∗ ∈ Xx  is continuous linear operator, we have 

,,∫ ∫ ∫∫
∗∗∗∗∗∗∗∗ ===

A A AA
fdxfdxfdxfdx AAAA  

and hence the desired equality. ~ 

Corollary 20. If X is a separable Banach space, then A -Pettis-
integrability is equivalent to A -integrability over a measurable set A for 
(weakly) measurable functions. 
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