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Abstract

A method for the sinmlation of samples from the exact posterior distribwtions of the
parameters in logistic regression is proposed. It is based on the principle of data
augmentation and a latent variable is introduced, similar to the approach of Albert and Chib
(T Am. Staf. Assoc, 88 (1993) 669), who applied it to the probit model In general, the
full condiional distibutions are inractable, but with the infroductions of the latent variable
all conditional distributions are uniform, and the Gibks sampler is easily applicable. Marginal
likelihoods for model selection can be obtained at the expense of additional Gibbs
cycles. The technique is extended and can be applied with nominal or ordinal
polyehotomous data.
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1. Imtroduction

When modelling binary data, the outcome variable T has a Bernoulli distribution
with probability of success m. If the probability of success depends on a set of co-
varates, then we have a distinct probability =, specific to the ith observation, ¥;. The
probability =; is regressed on the covariates through a link function that preserves the
properties of probabilitv. So m=H(fx;) where X; is the vector of covariates associated
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with the ith observation, 0 < H(.) < 1, and H{.) is a continuous non-decreasing fune-
tion. Usually the link function is taken as the cumulative distribution function (CDF)
of some continunous random varable, defined on the whole real line. The two link
functions in common use are the CDF of the standard normal distribution, the probit
model, and the CDF of the logistic distribution, the logit model. These kinds of models
are described in detail in a number of books. See, for example, Cox (1971) or Maddala
(1983). For a sample of » observations, the likelihood function is given by

L(p

"
data) cc [ [ H(Bx ) (1 — H(bx))' . (1.1)
i=1

When using maximum likelihood estimation, inferences about the model are usually
based on asymptotic theory. Griffiths et al. (1987) found that the MLEs have significant
bias for small samples. With the Bavesian approach and prior ={f), the posterior of
is given by

mip|data) oo w(BIL(f|data), i(1.2)

which is intractable in the case of the probit and logit models. In the past, asymptotic
normal approximations were used for the posterior of f. Zellner and Rossi (1984) used
numereal integration when the number of parameters is small. Albert and Chib (1993
introduced a simulation-based approach for the computation of the exact posterdor dis-
tribution of B in the case of the probit model. The approach is based on the idea of data
augmentation (Tanner and Wong, 1987), where a normally distributed latent vardable
is introduced into the problem. This approach also enables them to modsl binary data
using a ¢ link function.

In this paper we apply the data augmentation approach of Albert and Chib (1993)
to the logit model. This enables us to use Gibbs sampling to obtain samples from
the posterior distribution of f, drawing only from uniform distributions. The technique
is extended in Section 3 to multiple response categories, and in Section 4 applied to
ordinal responses where the thresholds, or cut off points, must also be estimated. Again,
only simulation from uwniform distributions is required to obtain marginal posterior
distributions.

Gibbs sampling is a simplified wversion of the Metropolis—Hastings algorithm
i Metropolis et al, 1953; Hastings, 1970), and applicable when it iz possible to
sample directly from all conditional distibutions. The Metropolis—Hastings algorithm
is usually emploved in the case of logistic regression. Other Markov chain Monte Carlo
techniques in use are adaptive rejection sampling (ARS), which is used in the WinBugs
software, and adaptive rejection metropolis sampling (ARMS).

While marginal posterior distributions of parameters in logistic regression can be
obtained using WinBugs, it cannot provide marginal likelihoods, In Section 5 the
data augmentation technique is applied to model selection wia Bayes factors. Based
on a method proposed by Chib (1995), the marginal likelihood under a particular
model can be caleulated by running additional Gibbs cycles, one for each
parameter in the model. In Section 6 the technique is illustrated by two
applications.
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2. Dichotomouns response variable

Let
I with probability m
¥ = i=1,2,....m, (2.1)
0 with probability | — =,
where
m
log = px;, (2.2)

l-m

i.e. the log-odds for the sth sampling unit is a linear function of the observed covan-
ates X; = (Lognxo,. .. xp), where P =(fof..... ) is a row vector of regression
coefficients. Then
o Expi Bxlj _ - 5 o
T Trepy AP 23
where F(.) is the CDF of the logistic random wvariable Z, with probability density
function

fz(z]=—exp(z] —o0 <z < Do

(1 +exp(z))F’

B .
m =f —EXP[") = dz,
—sa (1 +expiz))

expl fx;)
R . i\ el 24

( 1+ exp{ Pﬂ‘n)) ( ]
where 7 has a Uniform (0,1} distribution. Introducing the independent latent
varables W= (wy u2, ... 0,), the joint posterior density of b and w given the data
¥={(¥.V2.... V) is then given by

S0

n(puly) o E(B].-lj {I (u.- < %) Iy =1)
+I (u,- > %) Iy = 0)}1{0 <u<1) (2.5)
o« m(mi[l {I(ﬂx,- > lng(l fu) I(n=1)
+ (m < log(ﬁ)) Iy = OJ}I(G <u<l), (2.6)

where m{[i) is the prior and [{X =.4) iz the indicator function that is equal to 1 if
X =4, and zero otherwise.
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It is clear from (2.5) that, given P and ¥, w has a uniform distibution, such that
the conditional distribution of w; iz given by

Uniform | 0, Lﬁm it w =1,
T+ exp(Px) |
wi|,y ~ i=1,2,...,n (2.7

Uniform (Lﬁxfj_, 1)
1 + exp(Px;)

From (2.6) we have that

r
u
Zﬁjxfj = log 1=
j=0

1 1y
=— |1 -
B X ( o8 I — oy

for all ¢ for which y,=1 and xz = 0, as well as for all ¢ for which y,=0 and x5 < 0.
Similarly,

mc%lgll—ZmJ

for all ¢ for which ;=10 and xg = 0, as well as for all 7 for which y,=1 and xz <0,
assuming v = 0. Let 4 and By be the sets

={i: ((w=1"{xg = 0NU{{y=0)N{xs < 0))}

={i: ((m=0)N{xg = 0NU{{y=1)N{xg = 0))}

Then, assuming the diffuse prior, #n{p) o« 1, for P, the conditional distribution of Ji,
given all the other f's and w, is the uwniform distribution;

if w=1,

S0

Bi|Bi—gy,0,¥ ~ Uniform{ag, by), &k =0,1,2,..., p, (2.8)
where
1
g =r|1;:_r<:!}:. " (log T~ Zﬁ'ru \ (2.9)
and
bj-=f]_éié} & l::-g ” —;ﬁxu . (2.10)

The Gibbs sampler is now easy to implement by drawing from uniform distributions.
The # values of m can be drawn in one block through (2.7), while the elements of f
are drawn successively by using (2.8). If the f's are independently distributed apriori
with any prior =(f) on fg, then the conditional distribution is simply =(f ), truncated
between az and By,
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3. Polychotomous response variable
Consider now the case where ¥ has more than two response categories and assume

independence among repeated trials. This results in a data set of # observations whose
distribution is multincmial with » categories. Let

RU'==P{F}==jl
and assume the logit ink function,
1og(f ) =B F=12...,r (3.1)
Then
Expiﬂfo] . - a .
EU J= lshs“'ar' (J'~]

1+ Z;—l exp(fx;)’

_p|v < B :
1+ T enp(Bex)

where [7 ~ Uniform (0, 1). Note that the rth category is the baseline category and i, =
0. The joint posterior distibution of f = {feH(r — 1) = (p + 1)) and
U= {s;Hm = (r — 1)), given the observed data, is

nor—l1 N
(B U)o m(B [ (“u e:E(lIL._x.) : ) I(_v.-=j-]]

i=l i=1 - 1+Zs=] E!'{p(ﬁsl,-]

10 < wy < 1), (3.3)

so that the conditional distibution of u; is given by

Uniform (0,7;) if y,=

”u"i!-- . . 5 i=12....m j=LL...,r—1,
Uniform (m, 1) if p# 7

with m; given in (3.2). From (3.3) it follows that

(o o)) ()

P £
wy b1+ ZExp Zﬁ;u.k < exp E ﬁ,-j.‘f,-j) — uy exp (z ﬁ,-;_-.‘r,-t)
k=i k=i

7] * 0

log 1 fuwj 1+ Zexp (Eﬁ;ﬁ-l,j) Rg X i -

a2 k=i

S0

.l-'p'jl' =4 ijis
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where

r—1 F r
1 u"J' . . ]
‘4')1' = _,1'“- J.Dg = " 1+ E exp( E ﬁs.’i‘-"-f.i‘) — E ﬁﬂ.‘-"-l’i‘ i (qu,]

pry =i pars
The above inequality must hold for all ¢ for which v, = and x; = 0 as well as for
all ¢ for which w # j and x; < 0. So let
Ap={i (=710 =00 F# 70 (e = 0))}

By = {r Sw=0(e < 0DV # 70 (3 > G])}!-
then the conditional distribution of fi; is Uniform (ay,b;), where

ag=max. Ay and by = mind;;.
e = en

L
i

4. Ordinal responses

Suppose ¥; can take one of r ordered categories, j=1.2,...,r, so that P(¥;=j)=n.
and the cumulative probabilities are J;r,-j=z*,';=l me=P(¥; = j). Introduce the continucus
latent variable U7, uniformly distributed owver [0,1], such that

ny=P| Ui < explay +Px) N\ _ _ expley +Px) . (4.1)
1+ exp(:xj + lh..) 1+ EXP(%’ + B-“-l]|
where f=(f1.fz....,fip) are the regression coefficients and & = (=, 21,..., %) are the
cut-off points of the intervals, such that —co =y < &) < -+ - < 5 = o0,
The joint posterior distribution of =, and v, given the response v, is then given by

r—1

n
mla pouly) oo mie, B)H EI(.VI' =jM( -1 < = my) P IO w < 1),

i=1 1 j=1

Assuming diffuse prior distributions for = and B, the conditional distibution of the
latent variable w; is given by

”l’l'xs Ba yi=j-~ Uuif:::-rm(r,r.-_j_ ls rfl’j]y i=12. ..m, (4'3]
where #;; is given in (4.1).
Let
| 5y £
Hy = o log 1 _' s o — Zﬁ;.‘r,-; . (4.4)

=2t

Then it follows from (4.2) that Hy = § < Hj—1 (H 1,0 = fi: < Hy) for all ¢ for
which ;= j and for which x; = 0 (x; < 0). But (4.4) must also hold for all j =
L2....r.s0 let 4;={i: vy =7}, then

B | Bi—rmon, ¥ ~ Uniform(a, b)), ¢=12,....p, (4.5)
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where a; < by always and

@ = m}x {rlqér‘t_j}:[mmiﬂ.'_j—J_rsHUr ]]} ,

br=ﬂ]j.ﬂ {min[max[H,-.j_J.,-,H,-J-r)]}. (4.6]

4

e
=

To find the conditional distribution of the cut-off points, w),...,%_), we have the
condition that s, < gy forall ie4; and w; = oy for all i €4y Also oy <oy < oy,
so that

o | o ¥ ~ Uniform(e,d;), j=L2....r—1, (4.7)
where
1 )
¢ = I_réffl [max {log — - ﬁ}_,-,:gj_l}],

d)=min [J.niu {log 1 fu - m,-,ijH . (4.8)

¥

5. Model selection

Bayesian model selection, or variable selection, is usually based on the Bayes factor,
which is the ratio of the marginal likelihoods of two competing models. Priors in
general should be proper, so in the context of the dichotomous model of Section 2,
exchangeable logistic priors with mean zero and scale parameter o are assumed for
the elements of [, the set of regression coefficients under model M;. Let p; be the
number of covariates included under model A, then

expl fiy/a) o

a(l + exp(fij/a))*’ J=0L.opr (5.1)
Priors on nuisance parameters that appear in all models, and with the same interpretation
in all models, does not greatly affect the results (Kass and Raftery, 1995), and improper
priors are being used in these situations. So let w{a)ac /s for all models, and to justify
a common scale parameter for all regression coefficients, the covariates are standardised.

The marginal likelihood under model Af; can be written in terms of the posterior
distribution as

m(f| o M) =

L(Be | v, M(B: | 0, M, )l )
R(B;,ﬂ' | :"-s-"l:fn‘ ]

The above identity holds for any parameter value. The numerator can be directly eval-
vated at a given point, say (Pf.o*). However, the posterior, =, o |v,M;), is not
available in closed form, and the initial Gibbs sampling does not provide an estimate
of the posterior value at (Bf,o*). Chib (1995) developed an approach to obtain an
estimate of the posterior ordinate by performing additional Gibbs cyecles. Using basic
probability rules, the posterior density ordinate, wipf.a*[v,3;), can be expressed as

w(Br. 0" |5, M) = (5 | 9. MORBT | 63,5, M) ool | B3, M), (53)

miy | M) =

(5.2)
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Each term on the nght-hand side of (5.2) can now be evaluated by Gibbs sampling.
Consider the first term, which is the ordinate of the marginal posterior of fiy at f under
mode] M. Dunng each cyele the latent vardables, w,i=1,2,...,»n, are drawn according
to (2.7) and a; and b calculated from (2.10) for each parameter fi,. A variable v, is
drawn where

(5.4)

'." b '."
o a0 ~ Unif:::-rm( exp(a;/a) exp(by/a) )

(1 + expla; /) (1 + explb;/a))

and fi; follows as

g.=_glu(1_”"), i=01,...,p: (5.5)

ty
The conditional distribution of o follows as

1 exp(y fi/a)
aP+2 TT0L + exp(fiy/a))*’

mie|Be) o (5.6)

from which o can be simulated using the Metropolis—Hastings algorithm, or, as done in
the applications, by discretisizing the distribution. After the mth cvele the conditional
ordinate at f} is given by

imy___ exp(fi/a) for d™ = gt = pim
m(By | B, )= { " a1+ exp(f /o) P oty
] otherwise,
(5.7)
where
Com (1 4+ explag /o] + explby/a))

explby/a) — explan/a)

After L cveles the ordinate m( i} | v, M) is obtained by averaging the values from (5.7).
Similarly for the rest of the parameters. For each parameter a new Gibbs chain is run,
keeping the values of parameters from previous runs fixed. Finally, the last term on
the right-hand side of (5.3), m{a* |Br. ¥, M;), is just Eq. (5.6), evaluated at B and o*.

Although thiz procedure leads to an increase in the number of iterations, it requires
little new programming bevond what is needed for estimation and is straightforward to
implement. Eq. (5.2) helds for any parameter value, but the procedure is more stable
if high density points are used, and in practice points close to the posterior mode
are preferable. See Chib (1995) for more details and properties. The procedure can
similarly be applied to the polychotomous and ordinal response models,
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6. Applications
6.1 Application 1

Piegorsch (1992) analvsed data on the analgesic effect of iontophoretic treatment
with the chemical vineristine on elderly patients complaining of postherpetic neuwralgia.
Eighteen patients were interviewed & weeks after undergoing treatment to determine if
any improvement in the neuralgia was evident. The response vadable ¥ is 1 if an im-
provement was recorded, and 0 otherwise. The four covarates are X treatment (1 or
0), Xa; age, X3; sex (1 for male), Xy; pre-treatment duration of symptoms. In our anal-
yais the covariates are standardised. The data is also reproduced in Hand et al. (1994).

The marginal likelihoods of all possible models were calculated, using the procedure
of Section 5, with 20,000 iterations during each cycle. The conditional distribution of
o (Eq. (5.6)) was discretisized with steps 0.2(0.2)3. For the model with no covarates,
o= 1 was assumed, corresponding to a uniform prior on w=P(¥;=1). Table 1 lists the
models with the highest Bayes factors relative to the simple model with no covadates.

According to the Bayes factors, the model with the two covariates, treatment and sex,
is the best, with the first eight models showing a marked improvement on the simple
model. All these models include &) (treatment), and the Bayes factor for the model
with X alone is 1.35 when compared to the full model. Piegorsch (1992) used the
data to illustrate complementary log regression and concluded that the three additional
varables, age, sex and duration, do not significantly improve the fit after inclusion of
the treatment term in the model. Adopting the model with covariates X| and X5, the
posterior distributions of the parameters are shown in Fig. 1, caleulated from 30,000
iterations. The model with improper priors from Section 2 gives essentially the same
results for the three regression parameters,

From the Gibbs output also follows other measures of interest. For example, the
mean posterior probability of a female on the treatment experiencing an improvement
is 0,742 with 90% HPD interval (0.518—0.987), while the same probability for a male
without treatment is only 0.089 with 90% HPD interval (0—0.279).

6.2 Application 2

In a study on the job expectations of students at the University of Regensburg
(Falhrmeir and Tutz, 2001), psvchology students were asked if they expect to find

E::ies lfﬁctn:u's of maodels mclading given covanates against the simple model

Covariates X X XLx A5 AA00G.0 XX
Bayes factor 121.1 658 5685 551 4588 429
Covariates X A8 ALAX X bl X404 A

Bayes factor 211 204 5 1.7 L5 L5
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Fig. . Posterior distnbutions of parameters under model with covariates 1) (ireatment) and 15 (sex).

Table 2

Posterior means and 95% HPD intervals of parsmetzrs for smplovment data

Parameter Post. Mean 95% HPD Interval F&T
%) 14925 13.38-16.47 14.987
% 18101 16.55-19.66 18,149
i —5.390 —586——4.90 —5.402

employment after getting their degree, and the response categories were ordered
according to thelr expectation. The three categories were | (do not expect adequate
employment), 2 (not sure), and 3 (expect immediate employment). The only co-
varate is age which ranges from 19 to 34, There are 102 observations and the
data can be found in Fahrmeir and Tutz (2001). The response can be considered
an assessed ordered varable and the theory in Section 4

applied with two cut-off
points, o) and oy, and the regression coefficient f of x

= log{age). Vague uniform
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Fig. 2. Posterior probabilities for the three categones as a function of age, with 5% HPD intervals.

prors was used for all parameters. The Gibbs cvele was mun 50,000 times and the
Bayes estimators are given in Table 2 with the 95% HPD intervals. The maximum like-
lihood estimators obtained by Falrmeir and Tutz (2001) (F&T) are also
shown.

The posterior means correspond closely with the estimators of F&T. Fig. 2 shows the
probabilities for the three categories as a function of age, with the 95% HPD intervals.
It is clear that optimism about employment increases with age.

7. Conclusion

The main purpose of this paper is to illustrate a relatively simple method of simulat-
ing values from the marginal posterior distributions of the parameters in a logit model
using the Gibbs sampler. This model iz also very suitable for caleulating marginal
likelihoods and thus Bayes factors when comparing competing models. As the full
conditional distributions of the parameters are intractable, Bayvesian analyses usually
employed the Metropolis—Hastings algorithm to obtain posterior distributions. The
Gibbs sampler is much easier to apply, and, from experdence, converges quickly. The
method is based on the data augmentation approach of Tanner and Wong (1987),
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which iz applied by Albert and Chib (1993) to the probit model, where a normally
distributed latent variable iz introduced. In the case of the logit model a logistic vardable
iz transformed so that we work with a uniformly distributed latent varable.

In the applications of Section 6 the marginal posterior of a parameter was obtained by
the “Rao-Blackwell” method (see Gelfand and Smith, 1990, Section 2.6) of averaging
over the conditional distributions, given the generated values of the other parameters.
Because of the nature of the conditional distributions (uniform) it needs a relatively
large number of cycles to obtain a smooth marginal posterdor distribution. In the case of
several covarates it may be more efficient to approximate the posteriors by smoothed
histograms of the generated values.

In this paper we used exchangeable logistic priors for all regression parameters when
calculating Baves factors. This was done for convenience (still drawing from uniform
distributions), and because the logistic distribution is close to the normal distribution
in shape. The differences in posteriors are negligible if the prior vadances are not too
small. Howewver, this can be generalised at a slight expense of computational effort. If
the fi's are assumed to have some exchangeable proper priors, then the full conditional
distribution of a particular i will be the prior distribution, truncated at the same end-
points as the uniform distribution derived in this paper. The conditional distribution of
the latent vardable v remains unatfected.
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